Researchers identify novel mechanism to reduce nervous system inflammation

Sep 24, 2008

Researchers at Georgetown University Medical Center have discovered a new way to limit inflammation caused by the activation of microglia - key immune cells in the brain. Although the role of such cells is to "clean up damage" after injury, they often worsen the damage by releasing toxic inflammatory factors.

In the October issue of the journal Glia, now published online, the scientists say that the type of chemical they used to deactivate these cells could possibly be developed as a drug to treat a variety of acute and chronic disorders marked by brain cell damage – including stroke, head and spinal cord injury, and possibly Alzheimer's disease and Parkinson's disease.

"Inflammation associated with the activation of microglial cells is an important factor that appears to contribute to tissue damage and disability in many of the important neurodegenerative disorders. By decreasing this inflammatory response, tissue loss after injury can be reduced. Thus, what we found in this study has important potential therapeutic implications for the treatment of a number of important neurological disorders," says the study's senior investigator, Alan I. Faden, M.D., a professor of neuroscience and director of the Laboratory for the Study of Central Nervous System Injury.

The research, led by investigator Kimberly Byrnes, Ph.D., an assistant professor in Faden's laboratory, centered on microglial cells, which react against pathogens that invade the brain, and also remove foreign material and damaged cells.

Byrnes describes microglial cells as just a little too good at their jobs. "They overdo it, perhaps because they don't have very good stop signals. They secrete a number of toxic chemicals designed to clear up infections and damaged tissue-- but in the process they can kill sensitive brain cells."

In this study, Byrnes, Faden and a team of four other researchers looked to see whether microglial cells express a certain receptor on their surface that Faden and his laboratory had previously found could be turned on in brain neurons to prevent cell death in response to injury. The receptor, the group I metabotropic glutamate receptor 5 (mGluR5), which also plays a critical role in modulating pain and addiction, was previously found in other types of brain cells.

The researchers found the receptor protein in microglia in cell culture. "That's a first," Byrnes says. They then showed that a selective activator of this receptor type, CHPG, could turn off microglial activity. This is the same chemical that Faden discovered could shut down certain kinds of suicide cell death (apoptosis) in neurons.

"We found that if we stimulate just this receptor, we can markedly reduce microglial release of key inflammatory factors and the ability of activated microglia to kill nerve cells," Byrnes says.

The receptor, therefore, appears to be a switch-off mechanism, a brake on the damaging effects of microglial activity. "This is possibly a way that the brain has designed to turn microglia off, but the problem is that these cells get many other signals that keep them turned on after injury."

Treating brain injury with a selective compound may be challenging, the researchers add. "Microglia also releases good chemicals, such as growth factors, to promote nerve cell regrowth and regeneration, so the trick will be to discretely use it after injury for a period of time."

But brain and spinal cord injury studies in animals, conducted after the present experiments were completed, have been very encouraging, Byrnes says. Those studies have not yet been published.

Source: Georgetown University

Explore further: Study hints at antioxidant treatment for high blood pressure

add to favorites email to friend print save as pdf

Related Stories

Flap over sage grouse spurs Congress to intervene

24 minutes ago

Congress is poised to make an end-run around the Endangered Species Act with a legislative rider on a massive spending bill that would delay protections for several struggling bird populations in the Western U.S.

Bangladesh oil spill 'threatens rare dolphins'

34 minutes ago

Bangladesh officials warned Thursday that an oil spill from a crashed tanker is threatening endangered dolphins and other wildlife in the massive Sundarbans mangrove region, branding the leak an ecological ...

Budget deal takes aim, but misses on climate plans

54 minutes ago

A congressional deal to finance the government chips away at some Obama administration energy and environmental programs, but leaves largely intact the president's plans on global warming—at least until Republicans take ...

Researchers discover new class of stem cells

1 hour ago

Researchers have identified a new class of lab-engineered stem cells-cells capable of transforming into nearly all forms of tissue-and have dubbed them F-class cells because they cluster together in "fuzzy-looking" ...

Recommended for you

Stem cells faulty in Duchenne muscular dystrophy

1 hour ago

Like human patients, mice with a form of Duchenne muscular dystrophy undergo progressive muscle degeneration and accumulate connective tissue as they age. Now, researchers at the Stanford University School of Medicine have ...

Here's how the prion protein protects us

6 hours ago

The cellular prion protein (PrPC) has the ability to protect the brain's neurons. Although scientists have known about this protective physiological function for some time, they were lacking detailed knowledge ...

Regulation of maternal miRNAs in early embryos revealed

7 hours ago

The Center for RNA Research at the Institute for Basic Science (IBS) has succeeded in revealing, for the first time, the mechanism of how miRNAs, which control gene expression, are regulated in the early embryonic stage.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.