A molecule keeps anxiety down

Aug 19, 2008
In the amygdala, experiences are linked to emotions. It has now been revealed how a small molecule affects this process. Image: Max Planck Institute for Neurobiology/Deininger

(PhysOrg.com) -- The link between emotions and experiences determines many aspects of our daily life. It allows us to recognize pretty objects or harmful situations. These links are created when nerve cells construct new connections to one another or reinforce existing connections. Scientists at the Max Planck Institutes for Neurobiology and Psychiatry and at the Großhadern Clinic (Ludwig Maximilian University) have now discovered a molecule with a crucial influence on the strength of these connections (PNAS, August 4, 2008).

When a child touches a hot plate on a stove, it will more than likely be the first and last time. The reason for this rapid learning process lies in the amygdala, a small area in the brain that links experiences to emotions. In this area, the hot plate, the pain experience and a low level of fear are linked together - and the child avoids touching the hot plate in the future.

While this link from fear to experiences frequently protects the body from injury, an incorrect or inappropriate link can result in serious problems. One example is phobias, in which relatively harmless objects or situations are connected to fear. How do the nerve cells form these links and how are they regulated?

Memories and also fear-experience links are created when nerve cells form new contacts or reinforce existing contact to neighbouring cells. So-called Eph receptors are important for signal transmission at these contact points. They sit on the surface of the nerve cells and have an antenna-like function. If a neighbouring cell with the correct binding partners binds to these receptors, the signal is transmitted more strongly. The fewer Eph receptors a cell has on its surface, the weaker the communication with other nerve cells - and it becomes more difficult to link emotions to experience in the amygdala.

Scientists at the Max Planck Institutes for Neurobiology and Psychiatry and the Großhadern Clinic at the Ludwig Maximilian University have been researching a molecule that controls the number of Eph receptors on the surface of nerve cells. Called Rin1, the molecule ensures that Eph receptors are transported in larger numbers from the cell surface to the cell interior.

If there is no Rin1 in the amygdala nerve cells of a mouse, the number of Eph receptors remains high. The result is a stronger signal transmission between the nerve cells - the molecular basis for a heightened fear response. On the other hand, if the Eph receptor is missing, the communication between the nerve cells is not strengthened and it seemingly becomes more difficult to link the emotion with the experience.

Rin1 is the first module known to limit the availability of Eph receptors in the adult brain. "We are gradually starting to understand how emotions are linked to experiences on a molecular level," says Rüdiger Klein, who headed the study. This understanding is the key to developing potential medicines. "Basic knowledge, such as the regulation of the Eph receptors by Rin1, could permit us in the future to improve the poor transmission of signals between the nerve cells or to eliminate damaging links," says Katrin Deiniger, who hopes to see this as the long-term objective of their study. That is a promising perspective, as Eph receptors play an important part in other processes, for example in the development and regeneration of the nervous system.

Citation: Katrin Deininger, Matthias Eder, Edgar R. Kramer, Walter Zieglgänsberger, Hans-Ulrich Dodt, Klaus Dornmair, John Colicelli, Rüdiger Klein; The Rab5 guanylate exchange factor Rin1 regulates endocytosis of the EphA4 receptor in mature excitatory neurons; PNAS, August 4th, 2008

Provided by Max Planck Institute of Neurobiology

Explore further: Growing a blood vessel in a week

add to favorites email to friend print save as pdf

Related Stories

Scientists develop compact medical imaging device

30 minutes ago

Scientists at the MIRA research institute, in collaboration with various companies, have developed a prototype of a handy device that combines echoscopy (ultrasound) with photoacoustics. Combining these two ...

Software models ocean currents for oil and gas search

40 minutes ago

A study involving the use of streamline visualisation has found the technology can help guide electromagnetic transmitter and receiver placements, thereby aiding the search for oil and gas on the seafloor.

Intelligent materials that work in space

43 minutes ago

ARQUIMEA, a company that began in the Business Incubator in the Science Park of the Universidad Carlos III de Madrid, will be testing technology it has developed in the International Space Station. The technology ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0