Why the slow paced world could make it difficult to catch a ball...

Aug 04, 2008

BBSRC researchers at the University of Birmingham have uncovered new information about the way that we perceive fast moving, incoming objects – such as tennis or cricket balls. The new research, published today in the Proceedings of the National Academy of Sciences (PNAS), studies why the human brain has difficulty perceiving fast moving objects coming from straight ahead; something that should be a key survival skill. The research has implications for understanding how top-class sportspeople make decisions about playing a shot but could also be important for improving road safety and for the development of robotic vision systems.

The information that the brain uses to process moving objects and to estimate their likely trajectory – which can then be used to decide whether to move out of the way or how to play a shot or catch a ball – is biased by the generally slow moving world around us. Dr Andrew Welchman, a Biotechnology and Biological Sciences Research Council (BBSRC) David Phillips Fellow, has discovered that this bias affects the way we perceive and interpret objects approaching from dead ahead far more than objects moving side-to-side in our field of vision.

Dr Welchman explains: "We may think we live in a fast moving, hectic world, but statistically our environment moves around us slowly. Apart from the odd speeding car, buildings, landscape and walls around us all move past us at slow and predictable speeds. Our brains are constantly building up a statistical picture of the world around and, based on experience, it is a statistically slow world.

"When an object moves quickly – be it a football, cricket ball or, for our ancestors, a spear – our brains have to interpret the movement rapidly and, because our brains draw on experience, it's often biased by what it already knows. The less certain we are about what we see, the more we are influenced by the brain's statistical assumptions, which means in some circumstances we get it wrong."

The human visual system can interpret sideways movement better than it can the movement of objects straight towards us, and this affects our judgments about objects coming our way. Working with colleagues at the Max Planck Institute in Tuebingen, Germany, Dr Welchman developed a mathematical model to show how the brain predicts the motion of an incoming object and tested this with experiments. His model shows that our previous experience of the world around us guides our perception more for objects that come straight towards us than when objects move sideways. The result of this is that approaching objects can look slower than they are and we can believe and object will miss us when actually due to hit us.

Dr Welchman said: "Although it is not surprising that sportsmen who practice a lot build up a better statistical picture in their minds about where a ball might go, it is surprising that what should be a vital survival skill is based on such a trial and error learning experience."

The research has serious applications beyond the world of sports. Motorists driving in poor visual conditions such as fog often drive too fast for the conditions because they judge speed inappropriately. The poor visual information produced by fog means the brain relies more on its assumption that the world moves slowly, so the car's motion is judged slower than it actually is.

Dr Welchman said: "The research also has important long term application to robotics and assistive technologies. Capitalising on nature's design is a good way of building artificial visual systems for robots – as humans get visual judgments right a lot more often than the best current robot systems. Further, knowing the situations in which humans get it wrong is a useful starting point for the design of assistive devices to help correct those errors before they have serious consequences."

Source: Biotechnology and Biological Sciences Research Council

Explore further: Carcinogenic role of a protein in liver decoded

add to favorites email to friend print save as pdf

Related Stories

A guide to the 2014 Neptune opposition season

Aug 29, 2014

Never seen Neptune? Now is a good time to try, as the outermost ice giant world reaches opposition this weekend at 14:00 Universal Time (UT) or 10:00 AM EDT on Friday, August 29th. This means that the distant ...

Shipyard workers test out robot suits in South Korea

Aug 05, 2014

Industry leaders looking to see how automation and product ion will behave on the next levels will see two technology paths, robots offered as replacements for human labor and robotic technologies that will ...

Recommended for you

Gamers helping in Ebola research

11 hours ago

Months before the recent Ebola outbreak erupted in Western Africa, killing more than a thousand people, scientists at the University of Washington's Institute for Protein Design were looking for a way to stop the deadly virus.

Carcinogenic role of a protein in liver decoded

14 hours ago

The human protein EGFR controls cell growth. It has mutated in case of many cancer cells or exists in excessive numbers. For this reason it serves as a point of attack for target-oriented therapies. A study ...

A new way to diagnose malaria, using magnetic fields

Aug 31, 2014

Over the past several decades, malaria diagnosis has changed very little. After taking a blood sample from a patient, a technician smears the blood across a glass slide, stains it with a special dye, and ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Icester
not rated yet Aug 05, 2008
Quote: "our previous experience of the world around us guides our perception more for objects that come straight towards us than when objects move sideways."

Doesn't this run counter to his next quote? "Although it is not surprising that sportsmen who practice a lot build up a better statistical picture in their minds about where a ball might go, it is surprising that what should be a vital survival skill is based on such a trial and error learning experience."

It sounds to me that our experience (and therefore statistical probability) builds our model of the world - not the fact of "vital survival skills".
These findings would then make perfect sense because very few objects come straight at us (statistically) compared to those that can be observed with sideways motion. Sportsmen have a considerably higher percentage of "things coming at them" that non-sportsmen - therefore it follows that their model for "things coming at them" would be better.