Researchers design model for automated, wearable artificial kidney

Jul 10, 2008

Two researchers from UCLA and the Veterans Affairs Greater Los Angeles Healthcare System have developed a design for an automated, wearable artificial kidney, or AWAK, that avoids the complications patients often suffer with traditional dialysis.

The design for the peritoneal-based artificial kidney — which is "bloodless" and reduces or even eliminates protein loss and other dialysis-related problems — is summarized in an article published in the current issue of the journal Clinical and Experimental Nephrology, available online at dx.doi.org/10.1007/s10157-008-0050-9.

UCLA–VA has also signed an exclusive licensing agreement with the Singapore-based company AWAK Technologies Pte. Ltd. to develop a commercial wearable kidney based on the design by Martin Roberts, an assistant professor of clinical medicine at the David Geffen School of Medicine at UCLA and a dialysis consultant with the VA Healthcare System, and David B.N. Lee, a professor of medicine at the Geffen School and a consultant nephrologist at the VA.

Around 1980, an artificial kidney machine was built that incorporated many of the principles on which the new technology relies, according to Roberts. But that machine, while portable, was not wearable. The new technology would allow patients to go about their regular business while undergoing dialysis.

"What's really new about it is the patient's freedom," Roberts said. "To me, as the inventor, the most important thing for the patients is their freedom. The next important thing is that because it's working all the time instead of intermittently, you can do a much better job of treating the patient. So we expect the patient to feel better and live longer."

Kidneys remove metabolic wastes from the body and regulate fluid volume and distribution on a continuous, around-the-clock basis. With traditional hemodialysis, patients are hooked up to a machine for four hours, three times a week. Their blood is filtered through the machine to remove toxins and is then pumped back into the body. What hemodialysis can't do, however, is provide cleansing and fluid balance on a continuous basis; therefore, toxin levels and fluid volume tend to fluctuate, causing "shocks" to the patient's system. The same is true of standard peritoneal-based dialysis.

In addition, hemodialysis uses anticoagulants to prevent the blood circulating outside the body from clotting. But this, too, can cause complications. Work on other wearable kidneys has been based on this hemodialysis or hemofiltration model.

The AWAK, on the other hand, would function continuously, as natural kidneys do, eliminating patient "shocks." And because it does not involve blood circulation outside the body, it is "bloodless." It also regenerates and reuses fluid and protein components in the spent dialysate — the fluid that has abstracted toxins from the patient's blood and which is discarded in current practice — making it waterless and minimizing or eliminating protein loss.

"Dialysis-on-the-go, made possible by AWAK's 'wearability' and automation, frees end-stage renal failure patients from the servitude that is demanded by the current dialytic regimentations," Roberts and Lee write in the journal article.

Source: University of California - Los Angeles

Explore further: Startup commercializing innovation to reduce neurotoxin that damages nerve cells, triggers pain

add to favorites email to friend print save as pdf

Related Stories

Meteorite that doomed dinosaurs remade forests

16 minutes ago

The meteorite impact that spelled doom for the dinosaurs 66 million years ago decimated the evergreens among the flowering plants to a much greater extent than their deciduous peers, according to a study ...

US poverty rate dipped slightly in 2013

46 minutes ago

The number of people living in poverty in the United States dropped slightly in 2013 to 45.3 million, according to figures released Tuesday by the Census Bureau.

Tornadoes occurring earlier in 'Tornado Alley'

59 minutes ago

Peak tornado activity in the central and southern Great Plains of the United States is occurring up to two weeks earlier than it did half a century ago, according to a new study whose findings could help ...

Recommended for you

Cellular protein may be key to longevity

Sep 15, 2014

Researchers have found that levels of a regulatory protein called ATF4, and the corresponding levels of the molecules whose expression it controls, are elevated in the livers of mice exposed to multiple interventions ...

Gut bacteria tire out T cells

Sep 15, 2014

Leaky intestines may cripple bacteria-fighting immune cells in patients with a rare hereditary disease, according to a study by researchers in Lausanne, Switzerland. The study, published in The Journal of Experimental Me ...

T-bet tackles hepatitis

Sep 15, 2014

A single protein may tip the balance between ridding the body of a dangerous virus and enduring life-long chronic infection, according to a report appearing in The Journal of Experimental Medicine.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

iamkion132
not rated yet Jul 11, 2008
For someone like my dad, this would be perfect.