Study identifies toxic key to Alzheimer’s disease memory loss

Jun 26, 2008

Using new scientific techniques, scientists have unlocked the cascade of molecular events that lead to Alzheimer’s disease. The scientific findings published in the latest edition of Nature Medicine suggest a potential new target for the development of drug therapies to fight the irreversible and degenerative disease which affects some 29.8 million people worldwide. The total worldwide societal cost of dementia was estimated at somewhere in the region of US$315.4 billion in 2005.

Alzheimer's disease is marked by the build-up of plaques consisting of beta-amyloid protein fragments, as well as abnormal tangles of tau protein found inside brain cells. Early in the disease, Alzheimer's pathology is first observed in the hippocampus, the part of the brain important to memory, and gradually spreads to the cerebral cortex, the outer layer of the brain.

The team of Irish and international researchers have identified that the accumulation of a particular protein (called amyloid ß-protein - Aß) in the brain initiates Alzheimer’s disease and that it directly alters the structure and function of brain cells. The findings place a significant emphasis on the development of new therapeutic strategies targeted at the reduction of the formation of Aß as opposed to the reduction of the plaque burden associated with the disease.

“Alzheimer’s disease is a major personal and societal tragedy,” says Professor Ciaran Regan from the UCD School of Biomolecular and Biomedical Science, University College Dublin, one of the co-authors of the report. “The disease progression is torturously long and debilitating, extorting a huge emotional and economic cost.”

“The onset of the disease is insidious with the earliest symptoms often manifested as subtle and intermittent deficits of episodic memory,” explains Professor Dominic Walsh, associate Professor of Pharmacology at the UCD Conway Institute, University College Dublin, another co-author of the report.

“Our findings support the growing theory that Alzheimers’s disease memory deficits may result from loss of dendritic spines and that this process is mediated by amyloid ß–protein (Aß) oligomers, not monomer or plaque Aß as previously considered.”

Source: University College Dublin

Explore further: Vietnam battles fatal measles outbreak

add to favorites email to friend print save as pdf

Related Stories

World's first successful visualisation of key coenzyme

9 hours ago

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

Cholesterol transporter structure decoded

Mar 21, 2014

The word "cholesterol" is directly linked in most people's minds with high-fat foods, worrying blood test results, and cardiovascular diseases. However, despite its bad reputation, cholesterol is essential ...

Recommended for you

Vietnam battles fatal measles outbreak

47 minutes ago

Vietnam is scrambling to contain a deadly outbreak of measles that has killed more than 100 people, mostly young children, and infected thousands more this year, the government said Friday.

Researchers discover target for treating dengue fever

17 hours ago

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...

User comments : 0

More news stories

Vietnam battles fatal measles outbreak

Vietnam is scrambling to contain a deadly outbreak of measles that has killed more than 100 people, mostly young children, and infected thousands more this year, the government said Friday.

Under some LED bulbs whites aren't 'whiter than white'

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...