New research on mutation in yeast can enhance understanding of human diseases

Jun 19, 2008

[B]Work from UNH Hubbard Center, Indiana University, others enhances understanding of genetics in human diseases[/B]
Yeast, a model organism heavily relied upon for studying basic biological processes as they relate to human health, mutates in a distinctly different pattern than other model organisms, a finding that brings researchers closer to understanding the role of evolutionary genetics in human diseases and cancer. The study, by researchers from the University of New Hampshire, Indiana University, Harvard University, and the University of Utah, appears in Proceedings of the National Academy of Science (PNAS) Online Early Edition this week (June 16 – 20, 2008).

"In biology, the mutation is an absolutely fundamental process, essential to evolution but also the source of all genetic disease," says Kelley Thomas, associate professor of biochemistry and director of the Hubbard Center for Genome Studies at the University of New Hampshire. "Despite its importance, we still don't know much about the basic processes of mutation." Cancers are caused by mutations, as are inherited diseases like Huntington's disease and fragile X syndrome, the most common inherited form of mental retardation.

"If we know more about the patterns of mutation, we'd be able to better understand the origins of these diseases – and maybe prevent them," says Thomas.

The researchers asked a fundamental question: "What is the baseline rate and spectrum of mutation in yeast?" They found that, like the previously studied mutations in the nematode Caenorhabditis elegans, the yeast Saccharomyces cerevisiae had a very high rate of mutation from generation to generation.

Its patterns of mutation, however, turned out to be unique. While C. elegans mutations were largely the result of inserting or deleting base pairs of DNA, yeast's patterns of mutation were characterized by changing one base pair for another. "That was really surprising, that we didn't find that adding or subtracting in yeast," says Thomas. He adds that the consequences of inserting and deleting base pairs can be much more dramatic than substituting one base pair for another.

Comparing the mutation rates and spectrums of these two model organisms informs researchers' assumptions about mutation relevant to human health. "We were surprised that there isn't a common spectrum of mutation," says Thomas. "However, it's exciting, because if we can describe patterns of mutation, maybe we can understand why some organisms, including people, are susceptible to certain mutations and not others."

The approach used in this study allows yeast to accumulate mutations in the near absence of natural selection. By doing this, cells with mutations that might otherwise be lost because their cell is outgrown by others can continue to survive and be analyzed for their mutations. With this study, Thomas and his colleagues overcome a major limitation to the study of mutation by using a new generation of sequencing technology that let them sequence the entire genome of each yeast strain and to identify the rare mutational events that have taken place. This way, the yeast accumulate mutations that might otherwise make them "bad yeast" – the weak survive – and look for them across the entire 10 million base pair genome.

"The beer you make with this yeast is horrible," Thomas jokes.

Source: University of New Hampshire

Explore further: Sierra Leone declares five-day Ebola lockdown in north

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Sierra Leone bans Christmas parties amid Ebola

10 hours ago

Alice Marke and her family aren't celebrating Christmas the way they used to: The deadly Ebola epidemic in Sierra Leone means no festive parties at the beach, no carolers singing at night.

Fourth UN staff contracts Ebola in Liberia

12 hours ago

A fourth member of the UN mission in Liberia, the country hardest-hit by the Ebola epidemic, has been hospitalised after testing positive for the virus.

Tuberculosis avoids and subverts host immunity

Dec 23, 2014

An ancient disease, tuberculosis (TB) continues to be one of the major causes of disability and death worldwide. The recent TB cases in Quebec among the Inuit community has underscored the need to find new avenues to eradicate ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.