Experimental anti-cancer synthetic molecule targets tumor cell growth and angiogenesis

Jun 18, 2008

A recent study conducted by three French CNRS (Centre National de la Recherche Scientifique) laboratories describes a new candidate anti-cancer drug, named HB-19. In contrast to conventional anti-cancer drugs, HB-19 has a dual mechanism of action by its capacity to target independently both tumor cell growth, as well as tumor angiogenesis (formation of new blood vessels which bring necessary nutrients and oxygen to the tumor mass). The molecular target of HB-19 is nucleolin expressed on the surface of all activated cells, in particular rapidly growing tumor cells and endothelial cells that play a key role in angiogenesis. The results of this work, directed by Ara Hovanessian, are published in the June 18 edition of PLoS ONE.

Nucleolin is one of the major proteins of the nucleus, but it is also expressed on the cell surface where it serves as a binding protein for variety of ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. The specific binding of HB-19 to surface-expressed nucleolin leads to internalization of the complex followed by degradation of this multifunctional protein.

Using various in vitro and in vivo experimental models, the authors show that HB-19 is a potent inhibitor of tumor cell growth and angiogenesis. In mice grafted with human breast tumor cells, HB-19 treatment markedly suppresses the progression of tumor development, and in some cases eliminates measurable tumors while displaying no toxicity to normal tissue.

The in vivo antitumoral action of HB-19 in this mouse model (i.e. inhibition of tumor development) is comparable to that of 5-fluorouracil, a drug that is used to treat several types of human cancer. However, 5-fluorouracil has toxic effects on circulating white blood cells whereas HB-19 treatment demonstrated no observable toxicity in this study. Another possible advantage of HB-19 over existing anti-cancer drugs is its reproducible synthesis by conventional techniques to generate a stable product that is readily soluble in physiological solutions.

The direct action of HB-19 on tumor growth and angiogenesis fulfills the criteria for an efficient anticancer drug, since combination therapy targeting both of these events is considered an optimal strategy in cancer management. In view of such dual inhibitory action, reproducible synthesis, high stability, selective tissue retention, and in vivo lack of toxicity, HB-19 may be a promising candidate for evaluation in future clinical trials.

Source: Public Library of Science

Explore further: Cancer's growth driven by minority of cells within a tumour

add to favorites email to friend print save as pdf

Related Stories

Hoverbike drone project for air transport takes off

9 hours ago

What happens when you cross a helicopter with a motorbike? The crew at Malloy Aeronautics has been focused on a viable answer and has launched a crowdfunding campaign to support its Hoverbike project, "The ...

Study indicates large raptors in Africa used for bushmeat

9 hours ago

Bushmeat, the use of native animal species for food or commercial food sale, has been heavily documented to be a significant factor in the decline of many species of primates and other mammals. However, a new study indicates ...

'Shocking' underground water loss in US drought

10 hours ago

A major drought across the western United States has sapped underground water resources, posing a greater threat to the water supply than previously understood, scientists said Thursday.

Recommended for you

Same cancer, different time zone

21 hours ago

Just as no two people possess the same genetic makeup, a recent study has shown that no two single tumor cells in breast cancer patients have an identical genome.

User comments : 0