New molecular imaging techniques may lead to advances in disease treatment

Jun 16, 2008

A promising new technique has been developed that will enable more accurate non-invasive positron emission tomography (PET) imaging of new cells injected into the body, according to researchers at SNM's 55th Annual Meeting. The new technique, which involves engineering antibody fragments to act as reporter genes—or markers that signal cells of interest for PET imaging purposes—could significantly advance the study of genetically engineered cells to treat diseases.

"Genetic cell engineering is the focus of intense research in almost all areas of medicine and shows great promise for treatment of common illnesses such as heart disease, diabetes, and Parkinson's disease and other neurodegenerative disorders," said Wolfgang Weber, lead researcher of the study, Cell Surface Expression of an Engineered Antibody as a PET Reporter Gene for In Vivo PET Imaging, which was performed at the Department of Molecular and Medical Pharmacology at UCLA in collaboration with the Department of Chemistry at UC Davis.

However, despite intense efforts, researchers have few solid, noninvasive methods for accurately tracking the location, function and viability of small numbers of transplanted cells. "Our research shows that using antibodies as reporter genes in PET imaging provides these capabilities and could contribute to improved treatment of a number of potentially devastating diseases," added Weber, now professor of nuclear medicine at the University of Freiburg, Germany.

To improve PET imaging in this area, researchers have been studying the use of reporter gene–probe combinations. With this technique, cells are created to synthesize a protein that binds to or metabolizes radioactive reporter probes that are injected into the body and detected with PET imaging technology. However, most available reporter gene combinations are not aptly sensitive or specific and have significant limitations in terms of tracking the cells of interest to researchers.

In this new research, Weber and his team explored using cell surface–bound antibody fragments as reporter genes. These engineered antibody fragments, developed by the group of Claude Meares at Davis, bind irreversibly to low-molecular-weight antigens, which act as reporter probes. Cell culture and animal studies demonstrated intense and highly specific uptake of the probes in cells expressing the antibody fragment on the cell surface. These data indicate that antibody-based reporter genes represent a promising new platform for the development of new reporter gene and probe combinations.

Antibody-based reporter genes have several potential advantages over other combinations. For example, the pharmacokinetics of the reporter probe can easily be optimized, and probes can identify antibodies with much higher specificity, thus improving the accuracy of PET imaging. In addition, the number of antibodies that can be used as reporter genes is virtually unlimited compared with available viral or mammalian reporter genes. Antibody-based reporter genes have low immunogenicity and are better suited for imaging the expression of several genes.

Source: Society of Nuclear Medicine

Explore further: Team explores STXBP5 gene and its role in blood clotting

add to favorites email to friend print save as pdf

Related Stories

Tropical fish a threat to Mediterranean Sea ecosystems

2 hours ago

The tropical rabbitfish which have devastated algal forests in the eastern Mediterranean Sea pose a major threat to the entire Mediterranean basin if their distribution continues to expand as the climate ...

The latest observations of interstellar particles

2 hours ago

With all the news about Voyager 1 leaving the heliosphere and entering interstellar space you might think that the probe is the first spacecraft to detect interstellar particles. That isn't entirely true, ...

Indie game developers sprouting at Tokyo Game Show

2 hours ago

Nestled among the industry giants at the Tokyo Game Show Thursday are a growing number of small and independent games developers from Asia and Europe, all hoping they are sitting on the next Minecraft.

Recommended for you

A new way to prevent the spread of devastating diseases

1 hour ago

For decades, researchers have tried to develop broadly effective vaccines to prevent the spread of illnesses such as HIV, malaria, and tuberculosis. While limited progress has been made along these lines, ...

New molecule allows for increase in stem cell transplants

1 hour ago

Investigators from the Institute for Research in Immunology and Cancer (IRIC) at the Université de Montréal have just published, in the prestigious magazine Science, the announcement of the discovery of a new molecule, the fi ...

Team explores STXBP5 gene and its role in blood clotting

4 hours ago

Two independent groups of researchers led by Sidney (Wally) Whiteheart, PhD, of the University of Kentucky, and Charles Lowenstein, MD, of the University of Rochester, have published important studies exploring the role that ...

User comments : 0