Developing unique brain maps to assist surgery and research

Jun 16, 2008

Researchers from the Howard Florey Institute in Melbourne are developing new technology to create individualised brain maps that will revolutionise diagnosis of disease and enhance the accuracy of brain surgery.

Currently researchers and neurosurgeons rely on coarse maps of the brain's structure that are based on a small number of individuals' brains after death. These maps do not allow for differences that can occur between people's brains.

The new brain mapping technology will be created by developing acquisition and analysis processes and software that will provide microscopic level investigation of individual brains.

The Florey researchers are contributing neuroscience, engineering and mathematical expertise to this project, whilst collaborators from the Neuroscience Research Institute in South Korea are providing the equipment.

It is hoped this technology will become widely available in the next two to three years.

Leader of the Neuroimaging group at the Howard Florey Institute, A/Prof Gary Egan, said his group was using one of the most powerful Magnetic Resonance Imaging (MRI) scanners in the world – an ultra-high field 7 Tesla – to help develop the new brain mapping technology.

"Microscopic images inside the living brain will transform diagnosis and treatment of diseases such as multiple sclerosis, Parkinson's disease, Alzheimer's disease and Huntington's disease," A/Prof Egan said.

"This technology will allow us to look at cortical grey matter and underlying white matter at a level previously only seen before in post-mortem brains.

"Current MRI techniques cannot show specific organisation and functional patterns in the living brain.

"For example, developmental neuronal migration defects are known to cause epilepsy, but they cannot be seen with existing MRI technology.

"Ultra-high resolution imaging will allow scientists and doctors to clearly see defects in the brain and develop therapeutic strategies to address these problems," he said.

Unfortunately, Australia does not have a 7 Tesla scanner, which is why the Howard Florey Institute and University of Melbourne scientists are collaborating with the Neuroscience Research Institute in South Korea, who own the only high resolution 7 Tesla scanner in the Asia Pacific region.

The most powerful scanners in Australia are 3 Tesla, which are accessed by the Florey scientists for other research projects.

A/Prof Egan said he hoped a 7 Tesla scanner would very soon be located in Australia as neuroimaging can assist research into all brain and mind disorders.

"Having an ultra-high field 7 Tesla in Australia would allow us to accelerate our research, which would benefit the three million Australians who experience a major episode of brain disorder every year," he added.

This research will be presented at the 14th Annual Meeting of the Organisation for Human Brain Mapping, which opened yesterday in Melbourne. This conference, supported by the Howard Florey Institute, will see the world's neuroimaging experts share their latest research and develop new collaborations.

Source: Research Australia

Explore further: A novel therapy for sepsis?

add to favorites email to friend print save as pdf

Related Stories

Making quantum dots glow brighter

41 minutes ago

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

Recommended for you

A novel therapy for sepsis?

10 hours ago

A University of Tokyo research group has discovered that pentatraxin 3 (PTX3), a protein that helps the innate immune system target invaders such as bacteria and viruses, can reduce mortality of mice suffering ...

Cellular protein may be key to longevity

Sep 15, 2014

Researchers have found that levels of a regulatory protein called ATF4, and the corresponding levels of the molecules whose expression it controls, are elevated in the livers of mice exposed to multiple interventions ...

Gut bacteria tire out T cells

Sep 15, 2014

Leaky intestines may cripple bacteria-fighting immune cells in patients with a rare hereditary disease, according to a study by researchers in Lausanne, Switzerland. The study, published in The Journal of Experimental Me ...

User comments : 0