Researchers Find Source of Drug-Tolerant Tuberculosis

Jun 12, 2008

University of Pittsburgh-led researchers discovered that the primary bacteria behind tuberculosis can grow on surfaces and that drug-tolerant strains flourish in these bacterial communities, the research team recently reported in “Molecular Microbiology.” The findings suggest a possible reason why human tuberculosis (TB) requires months of intensive antibiotic treatment and indicate a potential cause of the relapses that can nonetheless occur.

The researchers are the first to show that “Mycobacterium tuberculosis” can grow in surface-level bacteria clusters known as biofilms that are common in nature but never before shown for TB bacteria, explained the paper's senior author Graham Hatfull, chair and Eberly Family Professor of Biological Sciences in Pitt's School of Arts and Sciences. Hatfull collaborated and coauthored the paper with Professor William Jacobs Jr. of the Department of Microbiology and Immunology at the Albert Einstein College of Medicine in New York.

Hatfull, Jacobs, and their colleagues found that the biofilm bacteria are physiologically and genetically different from TB bacteria harvested in a lab-the type used in developing antibiotics. These variations result in a population of the bacteria that are “drug-tolerant and harbor persistent cells that survive high concentrations of anti-tuberculosis antibiotics,” the team reports.

People with TB typically undergo six to nine months of treatment with multiple antibiotics and most of the bacteria generally die within the first two weeks. Yet the disease can recur, presumably because of drug-tolerant bacteria that have escaped the antibiotic. The source and location of these persistent cells are unknown, but Hatfull and Jacobs' research reveals a possible biofilm origin, Jacobs said.

“The nature of persisting “M. tuberculosis” cells has been an enigma for the entire field,” Jacobs said. “Clearly “M. tuberculosis” cells in biofilms represent at least one class of persistent cells, and we are testing their biological relevance.”

It is not yet known whether the biofilm actually factors into human TB infections, Hatfull said. He added that the only similar research regarding biofilm in living creatures showed the presence of biofilm-like or biofilm-related bacteria in guinea pigs.

“While our data does not show conclusively that biofilm formation in people gives rise to a drug-tolerant population, the fact that biofilms do so in the lab makes this an interesting and testable hypothesis,” Hatfull said.

Other collaborators on the project include: Yann Guerardel and associate Xavier Trivelli of the Universite des Sciences et Technologies de Lille in France; Laurent Kremer and associate Anuradha Alahari of France's University of Montpellier; Pitt postdoctoral researcher Anil Ojha; and Jacobs' research associates Anthony Baughn, Dhinakaran Sambandan, and Tsungda Hsu.

The full paper can be read on the “Molecular Microbiology” Web site at www.blackwell-synergy.com/doi/… 65-2958.2008.06274.x

Source: University of Pittsburgh

Explore further: New compounds protect nervous system from the structural damage of MS

add to favorites email to friend print save as pdf

Related Stories

Bacteria are wishing you a Merry Xmas

Dec 22, 2014

A bacterium has been used to wish people a Merry Xmas. Grown by Dr Munehiro Asally, an Assistant Professor at the University of Warwick, the letters used to spell MERRY XMAS are made of Bacillus subtilis, ...

Recommended for you

3-D printing offers innovative method to deliver medication

3 hours ago

3-D printing could become a powerful tool in customizing interventional radiology treatments to individual patient needs, with clinicians having the ability to construct devices to a specific size and shape. That's according ...

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.