MicroRNA controls expression of oncogenes

Jun 09, 2008

A new study demonstrates that microRNAs can modulate the expression of well known tumor-specific oncogenic translocation proteins and may play a significant role in some human cancers. The research, published by Cell Press in the June issue of the journal Cancer Cell, is likely to lead to new strategies for treating some specific lymphomas and leukemias.

MicroRNAs (miRNAs) are small noncoding pieces of RNA that can modulate the expression of specific target genes. Recent studies have suggested that increases or decreases in miRNA expression may be linked with regulation of oncogenes or tumor suppressors and are therefore likely to play an important role in human cancers.

Dr. Marcos Malumbres from the Spanish National Cancer Research Center (CNIO) in Madrid, Spain and colleagues identified a miRNA-rich chromosomal region in mice that is frequently lost in T cell malignancies. This particular region encodes about 12% of all genomic miRNAs. The researchers used miRNA expression profiling to reveal that one particular miRNA, miR-203, is silenced by both genetic and epigenetic mechanisms in several mouse and human blood cell malignancies, including chronic myelogenous leukemias and some acute lymphoblastic leukemias.

The researchers went on to show that transcriptional silencing of miR-203 lead to upregulation of the oncogene ABL1 and the BCR-ABL1 oncogenic fusion protein in various mouse and human hematopoietic malignancies. Further, restoration of miR-203 resulted in a subsequent reduction of ABL1 and BCR-ABL1 and in decreased proliferation of tumor cells.

"Our results suggest that miR-203 functions as a tumor suppressor and re-expression of this microRNA might have therapeutic benefits in specific hematopoietic malignancies, including some acute or chronic leukemias," concludes Dr. Malumbres. "This may be particularly beneficial for patients who are resistant to small molecule kinase inhibitors like Gleevec as resistant isoforms of ABL and BCR-ABL should contain the target site for miR-203 and are likely to respond to restored miR-203 function."

Source: Cell Press

Explore further: AstraZeneca cancer drug, companion test approved

add to favorites email to friend print save as pdf

Related Stories

US seeks China's help after cyberattack

30 minutes ago

The United States is asking China for help as it weighs potential responses to a cyberattack against Sony Pictures Entertainment that the U.S. has blamed on North Korea.

Why the Sony hack isn't big news in Japan

17 hours ago

Japan's biggest newspaper, Yomiuri Shimbun, featured a story about Sony Corp. on its website Friday. It wasn't about hacking. It was about the company's struggling tablet business.

Hopes, fears, doubts surround Cuba's oil future

18 hours ago

One of the most prolific oil and gas basins on the planet sits just off Cuba's northwest coast, and the thaw in relations with the United States is giving rise to hopes that Cuba can now get in on the action.

Ancient clay seals may shed light on biblical era

18 hours ago

Impressions from ancient clay seals found at a small site in Israel east of Gaza are signs of government in an area thought to be entirely rural during the 10th century B.C., says Mississippi State University archaeologist ...

Recommended for you

Putting the brakes on cancer

Dec 19, 2014

A study led by the University of Dundee, in collaboration with researchers at our University, has uncovered an important role played by a tumour suppressor gene, helping scientists to better understand how ...

Peanut component linked to cancer spread

Dec 19, 2014

Scientists at the University of Liverpool have found that a component of peanuts could encourage the spread and survival of cancer cells in the body.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.