New drug combination brings 1-2 punch against acute leukemia

May 16, 2008
Scientists in Lab
Scientists in lab. Credit: M. D. Anderson Cancer Center

Researchers at The University of Texas M. D. Anderson Cancer Center have discovered a drug combination that kills leukemia cells by shutting down their energy source and hastening cell starvation.

In a preclinical study, Lauren Akers, D.O., postdoctoral fellow from the Children's Cancer Hospital at M. D. Anderson, found that combining a novel glycolysis inhibitor, 3-BrOP, with mTOR inhibitor, rapamycin, induced more than 90 percent cell death in human tissue cultures of acute lymphocytic leukemia. She presented her study at the American Society of Pediatric Hematology/Oncology annual conference on May 16.

"We already knew that 3-BrOP was effective in preclinical research of glioblastoma, colon cancer and lymphoma, and most recently acute leukemias" says Akers, lead investigator on the study. "We also knew that mTOR inhibitors intensify cellular starvation. This study showed that the two together have a more powerful impact on treating acute lymphocytic leukemia, which is the most common childhood cancer."

Glycolysis is a process that turns glucose into energy for cells. Unlike healthy cells that get their energy for growth from both glycolysis and respiration, cancer cells are highly dependent on glycolysis. Using the M. D. Anderson-developed drug, 3-BrOP, researchers inhibited glycolysis, thus starving the leukemia cells from their energy source while leaving healthy cells free to get their energy from respiration.

Rapamycin is an mTOR inhibitor that keeps cancer cells from coping with stress, thus resulting in cell death. When researchers on the study combined the two drugs, they discovered a synergistic effect.

"We found that a lower dosage of 3-BrOP with rapamycin created the same results of more than 90 percent tumor cell death," says Akers. "Theoretically, we believe that patients will better tolerate the therapy by lowering the dosage of 3-BrOP and combining it with rapamycin."

Other researchers on the study include senior investigator Patrick Zweidler-McKay, M.D., Ph.D., Anna Franklin, M.D. and Wendy Fang, M.D., all from the Children's Cancer Hospital at M. D. Anderson. Peng Huang, M.D., Ph.D., from the Department of Molecular Pathology at M. D. Anderson was also an investigator and was responsible for the development of 3-BrOP.

The team of researchers plans to conduct additional mouse studies, which could lead to a Phase I clinical trial some time in the future.

Source: University of Texas M. D. Anderson Cancer Center

Explore further: Pepper and halt: Spicy chemical may inhibit gut tumors

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Pepper and halt: Spicy chemical may inhibit gut tumors

11 hours ago

Researchers at the University of California, San Diego School of Medicine report that dietary capsaicin – the active ingredient in chili peppers – produces chronic activation of a receptor on cells lining ...

Expressive writing may help breast cancer survivors

13 hours ago

Writing down fears, emotions and the benefits of a cancer diagnosis may improve health outcomes for Asian-American breast cancer survivors, according to a study conducted by a researcher at the University of Houston (UH).

Taking the guesswork out of cancer therapy

19 hours ago

Researchers and doctors at the Institute of Bioengineering and Nanotechnology (IBN), Singapore General Hospital (SGH) and National Cancer Centre Singapore (NCCS) have co-developed the first molecular test ...

Brain tumour cells found circulating in blood

20 hours ago

(Medical Xpress)—German scientists have discovered rogue brain tumour cells in patient blood samples, challenging the idea that this type of cancer doesn't generally spread beyond the brain.

International charge on new radiation treatment for cancer

20 hours ago

(Medical Xpress)—Imagine a targeted radiation therapy for cancer that could pinpoint and blast away tumors more effectively than traditional methods, with fewer side effects and less damage to surrounding tissues and organs.

User comments : 0