New drug combination brings 1-2 punch against acute leukemia

May 16, 2008
Scientists in Lab
Scientists in lab. Credit: M. D. Anderson Cancer Center

Researchers at The University of Texas M. D. Anderson Cancer Center have discovered a drug combination that kills leukemia cells by shutting down their energy source and hastening cell starvation.

In a preclinical study, Lauren Akers, D.O., postdoctoral fellow from the Children's Cancer Hospital at M. D. Anderson, found that combining a novel glycolysis inhibitor, 3-BrOP, with mTOR inhibitor, rapamycin, induced more than 90 percent cell death in human tissue cultures of acute lymphocytic leukemia. She presented her study at the American Society of Pediatric Hematology/Oncology annual conference on May 16.

"We already knew that 3-BrOP was effective in preclinical research of glioblastoma, colon cancer and lymphoma, and most recently acute leukemias" says Akers, lead investigator on the study. "We also knew that mTOR inhibitors intensify cellular starvation. This study showed that the two together have a more powerful impact on treating acute lymphocytic leukemia, which is the most common childhood cancer."

Glycolysis is a process that turns glucose into energy for cells. Unlike healthy cells that get their energy for growth from both glycolysis and respiration, cancer cells are highly dependent on glycolysis. Using the M. D. Anderson-developed drug, 3-BrOP, researchers inhibited glycolysis, thus starving the leukemia cells from their energy source while leaving healthy cells free to get their energy from respiration.

Rapamycin is an mTOR inhibitor that keeps cancer cells from coping with stress, thus resulting in cell death. When researchers on the study combined the two drugs, they discovered a synergistic effect.

"We found that a lower dosage of 3-BrOP with rapamycin created the same results of more than 90 percent tumor cell death," says Akers. "Theoretically, we believe that patients will better tolerate the therapy by lowering the dosage of 3-BrOP and combining it with rapamycin."

Other researchers on the study include senior investigator Patrick Zweidler-McKay, M.D., Ph.D., Anna Franklin, M.D. and Wendy Fang, M.D., all from the Children's Cancer Hospital at M. D. Anderson. Peng Huang, M.D., Ph.D., from the Department of Molecular Pathology at M. D. Anderson was also an investigator and was responsible for the development of 3-BrOP.

The team of researchers plans to conduct additional mouse studies, which could lead to a Phase I clinical trial some time in the future.

Source: University of Texas M. D. Anderson Cancer Center

Explore further: New breast cancer screening analysis confirms biennial interval optimal for average risk women

Related Stories

For many US teachers, the classroom is a lonely place

9 hours ago

One of the best ways to find out how teachers can improve their teaching is to ask them. The massive Teaching and Learning International Survey (TALIS) did just that and the answers offer crucial insights for teachers, school ...

Recommended for you

HLA expression tied to penile cancer outcomes

11 hours ago

(HealthDay)—Human leukocyte antigen (HLA) expression appears to be tied to clinical outcomes in penile cancer, according to a study published in the April issue of The Journal of Urology.

Study points to potential new lung cancer therapy

11 hours ago

New findings about regulation of PD-L1, a protein that allows cancer to evade the immune system, has shown therapeutic promise for several cancers, including the most common form of lung cancer.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.