Researchers discover gene for branchio-oculo-facial syndrome

Apr 23, 2008

Boston, MA--In a collaborative effort, researchers from Boston University School of Medicine (BUSM) have discovered that deletions or mutations within the TFAP2A gene (Activating Enhancer-Binding Protein) result in the distinctive clefting disorder Branchio-Oculo-Facial syndrome (BOFS).

This rare disorder is characterized by specific skin anomalies involving the neck and behind the ear, eye abnormalities, a typical facial appearance, and frequently cleft lip and palate. The study currently appears on-line in the April 17th issue of the American Journal of Human Genetics.

Using the latest in molecular microarray technologies, the researchers examined one affected mother and son and two sporadic BOFS cases and found a small deletion on chromosome 6 in the mother and son. Sequencing of genes in this candidate region revealed missense mutations clustered in the basic region of the DNA-binding domain of the TFAP2A gene in 4 sporadic BOFS patients.

According to lead author Jeff Milunsky, MD, director of clinical genetics, associate director of the Center for Human Genetics, and an associate professor of pediatrics, genetics and genomics at BUSM, this discovery will lead to more precise diagnostic testing, enable prenatal diagnosis, suggest directions for new research, and facilitate genetic counseling in these families.

“This gene is a well-known transcription factor involved in multiple developmental pathways as well as tumorigenesis. An intriguing finding is that one of the affected patients with a mutation also has brain cancer, highlighting again the connection between malformations and cancer,” he added.
Milunsky believes this discovery may have significant wide-ranging implications as this gene may also play a role in the more common isolated occurrence of cleft lip and palate.

Source: Boston University

Explore further: Study succeeds in doubling the life span of mice suffering from premature aging

Related Stories

How a deadly fungus evades the immune system

9 hours ago

New research from the University of Toronto has scientists re-thinking how a lethal fungus grows and kills immune cells. The study hints at a new approach to therapy for Candida albicans, one of the most c ...

Researchers clarify how DNA damage signaling works

8 hours ago

The DNA molecule is chemically unstable, giving rise to DNA lesions of various kinds. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed. The ...

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.