Blood vessels: The pied piper for growing nerve cells

Apr 10, 2008

Researchers at Johns Hopkins have discovered that blood vessels in the head can guide growing facial nerve cells with blood pressure controlling proteins. The findings, which suggest that blood vessels throughout the body might have the same power of persuasion over many nerves, are published this week in Nature.

“We’re excited to have stumbled across another family of proteins that can tell a growing nerve which way to grow,” says David Ginty, Ph.D., a professor of neuroscience at Hopkins and investigator of the Howard Hughes Medical Institute. “But the really interesting thing is that the nerves appear to use blood vessels as guideposts to direct their growth in one of several possible directions.”

The research team studied in mice a group of about 15,000 nerve cells known as the superior cervical ganglia, or SCG, which extend projections that innervate various structures in the head including the eyes, mouth and salivary glands. The SCG sits in a Y-like branching point of the blood vessel in the neck that supplies the head with blood, the carotid artery. In the developing embryo, nerve projections grow out of the SCG and grow along one of the two branches of the carotid artery; the nerves that grow along the internal carotid innervate the eyes and mouth among other head structures, and those that grow along the external carotid innervate the salivary glands.

To figure out how nerve cells “choose” to grow along the external carotid artery to innervate the salivary glands, the team looked for genes that appear to be preferentially turned on in the external carotid, and off in the internal carotid. Says Ginty, “There’s only two directions they can go and we wanted to know if they choose their direction or if the decision to go one way or the other is random.”

They found one gene that is expressed preferentially in the external carotid, a gene that makes the blood pressure regulating protein, endothelin, active. “It comes as no surprise that something critical for regulating the cardiovascular system in the adult also is used for directing nerve growth in the developing embryo,” says Ginty. “The genome is limited and nature has figured out a way to use things over and over again for unrelated functions.”

Further examination of the arteries in mouse embryos confirmed that endothelin is found only in the external carotid. To confirm that the nerve cell projections grow toward endothelin, the researchers removed SCGs and grew each one next to an endothelin-soaked bead. Checking on them three days later, the team found that nerves from the SCGs had grown towards the beads. To be certain that endothelin directs nerve growth in the living animal, the researchers then looked in mice that had the endothelin gene removed. Sure enough, these mice had no nerves growing along their external carotid arteries.

The team then wondered if all growing nerves in the SCG can respond to endothelin. So they looked for the endothelin receptors in SCG nerves and found only a subset of SCG nerves make endothelin receptors and concluded that those nerves somehow already had been chosen to respond to the endothelin made by the external carotid.

“How do these nerve cells know which target organ they’re supposed to innervate when they all come from the same progenitor?” asks Ginty. “This is what we’re going to study next.”

Source: Johns Hopkins Medical Institutions

Explore further: Paralyzed man recovers some function following transplantation of OECs and nerve bridge

add to favorites email to friend print save as pdf

Related Stories

Roads negatively affect frogs and toads, study finds

9 minutes ago

The development of roads has a significant negative and pervasive effect on frog and toad populations, according to a new study conducted by a team of researchers that included undergraduate students and ...

Fifth launch for Ariane 5 this year (w/ Video)

24 minutes ago

An Ariane 5 has lifted off from Europe's Spaceport in Kourou, French Guiana and delivered two telecom satellites, Intelsat-30/DLA-1 and Arsat-1, into their planned orbits.

Carbon capture and storage—reality or still a dream?

49 minutes ago

To have any chance of avoiding dangerous climate change we'll have to reduce the carbon emissions from our energy sectors—currently the largest human source of greenhouse gas emissions globally. And we'll ...

Cassini caught in Hyperion's particle beam

59 minutes ago

Static electricity is known to play an important role on Earth's airless, dusty moon, but evidence of static charge building up on other objects in the solar system has been elusive until now. A new analysis ...

Recommended for you

Team untangles the biological effects of blue light

4 hours ago

Blue light can both set the mood and set in motion important biological responses. Researchers at the University of Pennsylvania's School of Medicine and School of Arts and Sciences have teased apart the ...

Mouse model provides new insight in to preeclampsia

5 hours ago

Worldwide, preeclampsia is a leading cause of maternal deaths and preterm births. This serious pregnancy complication results in extremely high blood pressure and organ damage. The onset of preeclampsia is associated with ...

Scientists unravel the mystery of a rare sweating disorder

5 hours ago

An international research team discovered that mutation of a single gene blocks sweat production, a dangerous condition due to an increased risk of hyperthermia, also known as heatstroke. The gene, ITPR2, controls a basic ...

User comments : 0