Researchers identify first sex chromosome gene involved in meiosis and male infertility

Mar 14, 2008

A team of scientists led by University of Pennsylvania veterinary researchers have identified a gene, TEX11, located on the X chromosome, which when disrupted in mice renders the males sterile and reduces female fecundity. This is the first study of the genetic causes of infertility that links a particular sex chromosome meiosis-specific gene to sterility.

As with mice, the TEX11 gene is also located on the human X chromosome. Given that disruption of TEX11 causes azoospermia, or non-measurable sperm levels in mice, mutations in the human TEX11 gene may be a genetic cause of infertility in men. Because men have only one X chromosome that they inherit from their mother and thus only one copy of the TEX11 gene, any mutation could theoretically lead to sterility. Like other X-linked disorders such as color blindness and muscular dystrophy, genetic mutation causing a son’s infertility could be passed from his mother.

Researchers hypothesize that a screening of the TEX11 gene may provide a pre-birth diagnosis for infertility in men.

The study, published in the March issue of Genes & Development, also reports the first meiosis-specific factor ever found on the X chromosome. Meiosis is the process of cell division that produces gametes in both sexes. During meiosis, homologous chromosomes undergo pairing, synapsis, recombination and faithful segregation. Meiosis allows the exchange of genetic material between paternal and maternal genomes to produce genetically diverse gametes (sperm or eggs). Therefore, defects in meiosis are a leading cause of both infertility and birth defects.

An estimated 15 percent of couples are affected by infertility worldwide, yet the genetic causes of male infertility remain largely unknown. For decades, conventional wisdom stated that the X chromosome had little to do with meiosis or infertility because the X chromosome is silenced during male meiosis. This thinking led to fertility studies that focused on the Y chromosome and autosomes.

In fact, Jeremy Wang, assistant professor in the Department of Animal Biology at the University of Pennsylvania’s School of Veterinary Medicine, and his team revealed in an earlier study of mouse male germ cells that nearly one third of the germ cell-specific genes they identified are located on the X-chromosome.

Wang and his team found that sex chromosomes did play a role in meiosis. Although these X-linked, germ cell-specific genes undergo inactivation during later stages of male meiosis, they play a role in the early stages. Specifically, researchers found that TEX11 forms discrete foci on meiotic chromosomes and appears to be a novel constituent of the meiotic recombination machinery. The team genetically engineered male mice such that they lacked TEX11 function and found that this caused chromosomal asynapsis during the process of gamete formation.

This means that homologous chromosomes failed to pair together during meiosis and chromosomes formed fewer crossovers, i.e. sites where they recombine, during the initial stages of meiosis. These failures led to elimination of spermatocytes at later stages in the genetic recombination process and, ultimately, male infertility.

Researchers hypothesize that because TEX11 interacts with SYCP2, an integral component of the protein complex that mediates synapsis during meiosis, TEX11 promotes both synapsis and genetic recombination and may provide a physical link between these two meiotic processes.

Source: University of Pennsylvania

Explore further: DNA study could shed light on how genetic faults trigger disease

Related Stories

Celestial fireworks celebrate Hubble's 25th anniversary

41 minutes ago

The glittering tapestry of young stars flaring to life in this new NASA/ESA Hubble Space Telescope image aptly resembles an exploding shell in a fireworks display. This vibrant image of the star cluster Westerlund ...

Improving accuracy in genome editing

45 minutes ago

Imagine a day when scientists are able to alter the DNA of organisms in the lab in the search for answers to a host of questions. Or imagine a day when doctors treat genetic disorders by administering drugs ...

Ultra-sensitive sensor detects individual electrons

47 minutes ago

A Spanish-led team of European researchers at the University of Cambridge has created an electronic device so accurate that it can detect the charge of a single electron in less than one microsecond. It has ...

Recommended for you

Systematic interaction network filtering in biobanks

Apr 24, 2015

While seeking targets to attack Huntington's disease, an incurable inherited neurodegenerative disorder, neurobiologists of the research group led by Professor Erich Wanker of the Max Delbrück Center for ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.