Why the Switch Stays On: Scientists Discover Reasons Behind Cancerous Cellular Interactions

Dec 11, 2007

Cellular processes, such as when to multiply, are often regulated by switches that control the frequency and timing of interactions between proteins. North Carolina State University scientists have discovered the way in which a specific protein-protein interaction prevents the cell from turning one of its switches off, leading to uncontrolled cell proliferation – one of the hallmarks of cancer.

In a paper published in the December 2007 edition of the Cell Press journal Structure, the NC State researchers show for the first time that the interaction between a rogue version of a specific protein called Ras and its binding partner protein Raf can block the switch from being turned off.

The paper shows, says Dr. Carla Mattos, NC State associate professor of structural and molecular biochemistry and the lead author of the paper, that Raf secures one of the two so-called switch regions in Ras, so that the second switch can act like a closed door that isolates the key area where the overall signal switch is located. Mattos likens the abnormal protein-protein interaction to having the light permanently stuck on because the switch is inaccessible behind the closed door.

In the world of molecular biochemistry, Mattos explains, instructions for the proliferation of cells are given by cascades of protein-protein interactions controlled by on-off switches. The switch is on when the proteins can interact – resulting in cell proliferation – and off when they cannot. If access to the switch is blocked and the switch is stuck on, cells begin to multiply incessantly.

There are 20 existing amino acids that can be joined into chains that make up proteins. Each protein has a unique sequence of amino acids. In the chain of 189 amino acids of which Ras is composed, the position in question is at the 61st amino acid, which is normally a glutamine known to help in turning the interaction switch off. Change, or mutation, of this amino acid to an amino acid called leucine is a commonly observed defect in cancer cells.

"The switch only gets stuck on when Raf is present and the defective Ras has position 61 as a leucine or one of the few amino acids shown to cause cell transformation, one of the properties observed in cancer," Mattos says. "For glutamine or the mutations that do not cause cell transformation, the molecular door can fly open and allow access to the switch – even when Raf is bound to Ras. The door can always open in the absence of Raf."

The paper responds to a paradox that arose in the 1980s when scientists compared the behavior of Ras mutants in cells versus in solution, isolated from other cellular components including Raf. The studies of Ras in solution suggested nothing special about the mutations that cause cell transformation versus those that do not, as any amino acid other than glutamine at position 61 made turning off the Ras switch only 10 times slower, rather than blocking the switch. Scientists did not understand why the isolated Ras mutants behaved differently than the Ras mutants in their cellular environment.

Mattos, research associate Greg Buhrman and undergraduate student Glenna Wink provide the answer to this paradox by showing that the switch stays on when Raf binds Ras containing the leucine mutation and that it can be turned off in the absence of Raf, although not at the normal rate. In normal Ras the switch can be turned off either in the presence or absence of Raf. The atomic resolution structures of the rogue Ras proteins with strongly transforming mutations show that they all keep the molecular door closed and the switch on in the same way. The structures of the normal Ras and of a mutant known to have weak transforming ability both have the molecular door open.

"We all knew that there had to be something in the cell not accounted for by the studies in isolated Ras," Mattos says. "We now know that at least part of that something is the Raf protein. When the defective Ras encounters Raf, the switch becomes inaccessible and the highly controlled cell proliferation system is broken, leading to uncontrolled cell proliferation and cancer."

Source: North Carolina State University

Explore further: Cancer: Tumors absorb sugar for mobility

add to favorites email to friend print save as pdf

Related Stories

Physicists discuss quantum pigeonhole principle

5 hours ago

The pigeonhole principle: "If you put three pigeons in two pigeonholes at least two of the pigeons end up in the same hole." So where's the argument? Physicists say there is an important argument. While the ...

Giant crater in Russia's far north sparks mystery

7 hours ago

A vast crater discovered in a remote region of Siberia known to locals as "the end of the world" is causing a sensation in Russia, with a group of scientists being sent to investigate.

NASA Mars spacecraft prepare for close comet flyby

7 hours ago

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

Giant anteaters kill two hunters in Brazil

8 hours ago

Giant anteaters in Brazil have killed two hunters in separate incidents, raising concerns about the animals' loss of habitat and the growing risk of dangerous encounters with people, researchers said.

Recommended for you

Generation of tanners see spike in deadly melanoma

3 hours ago

(AP)—Stop sunbathing and using indoor tanning beds, the acting U.S. surgeon general warned in a report released Tuesday that cites an alarming 200 percent jump in deadly melanoma cases since 1973.

Penn team makes cancer glow to improve surgical outcomes

3 hours ago

The best way to cure most cases of cancer is to surgically remove the tumor. The Achilles heel of this approach, however, is that the surgeon may fail to extract the entire tumor, leading to a local recurrence.

Cancer: Tumors absorb sugar for mobility

15 hours ago

Cancer cells are gluttons. We have long known that they monopolize large amounts of sugar. More recently, it became clear that some tumor cells are also characterized by a series of features such as mobility or unlikeliness ...

User comments : 0