Research shows the brain's processing speed is significantly faster than real time

Nov 15, 2007

Scientists at The University of Arizona have added another piece of the puzzle of how the brain processes memory.

Bruce McNaughton, a professor of psychology and physiology, and his colleague David Euston have shown that, during sleep, the reactivated memories of real-time experiences are processed within the brain at a higher rate of speed. That rate can be as much as six or seven times faster, and what McNaughton calls “thought speed.”

Memory stores patterns of activity in modular form in the brain’s cortex. Different modules in the cortex process different kinds of information - sounds, sights, tastes, smells, etc. The cortex sends these networks of activity to a region called the hippocampus. The hippocampus then creates and assigns a tag, a kind of temporary bar code, that is unique to every memory and sends that signal back to the cortex.

Each module in the cortex uses the tag to retrieve its own part of the activity. A memory of having lunch, for example, would involve a number of modules, each of which might record where the diner sat, what was served, the noise level in the restaurant or the financial transaction to pay for the meal.

But while an actual dining experience might have taken up an hour of actual time, replaying the memory of it would only take 8 to 10 minutes. The reason, McNaughton said, is that the speed of the consolidation process isn’t constrained by the real world physical laws that regulate activity in time and space.

The brain uses this biological trick because there is no way for all of its neurons to connect with and interact with every other neuron. It is still an expensive task for the hippocampus to make all of those connections. The retrieval tags the hippocampus generates are only temporary until the cortex can carry a given memory on its own.

“It’s a slow process,” said McNaughton.

“The initial creation of the tag is made through existing connections. In order to do the rewiring necessary to have the intermodular connections carry the burden takes time. What you have to do is reinstate those memories multiple times. Every time you reinstate the memory, the modules make a little shift in the connection . . . something grows this way, grows that way, a connection gets made here, gets broken there. And eventually, after you do this multiple times, then an optimal set of connections gets constructed,” Mc Naughton said.

The brain is generally thought to do all of this during sleep, specifically slow-wave sleep, when the brain is not busy with processing real-time inputs. McNaughton has developed the technology to record from multiple probes, each of which can track the activity of a dozen or more brain cells.

“We need groups of cells because in order to identify a pattern, you have to look at the collected activity of many neurons,” McNaughton said. His previous research has show that cells that fired during activity prior to sleep, also fired in the same sequential patterns during sleep. During sleep, the hippocampus sends little, 100-millisecond bursts of activity to the cortex as much as three times per second.

What remains is finding an experiment that will enable researchers to demonstrate that changes in the memory reactivation process would affect memory consolidation but not damage the brain in the process.

“The more practical point, I think, is that this methodology, the ability to measure how fast the brain is processing at the level of changing the state of the brain from one 10- millisecond epoch to the next, how fast the internal state is sweeping through its memories or its allowable patterns is, I think, a model for thought speed,” McNaughton said.

Knowing the determinants for the speed of thought, he said, might allow studies of the effects of drugs, developmental anomalies and the behavioral therapies that might improve them.

Source: University of Arizona

Explore further: US scientists make embryonic stem cells from adult skin

add to favorites email to friend print save as pdf

Related Stories

Light field microscopy for whole brain activity maps

Jan 29, 2014

(Phys.org) —Advances in light-sheet microscopy have led to impressive images and videos of the brain in action. With this technique, a plane of light is scanned through the sample to excite fluorescent ...

Emerging ethical dilemmas in science and technology

Dec 10, 2013

As a new year approaches, the University of Notre Dame's John J. Reilly Center for Science, Technology and Values has released its annual list of emerging ethical dilemmas and policy issues in science and ...

Scientists engineer human stem cells

Dec 06, 2013

In an important scientific breakthrough in regenerative medicine, researchers at A*STAR's Genome Institute of Singapore have successfully converted human embryonic stem cells (hESCs) cultured in the laboratory to a state ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

Apr 18, 2014

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

quantum_flux
2 / 5 (2) Nov 15, 2007
We think faster than light, and then can see the past.... :lol:
HarryStottle
not rated yet Dec 01, 2007
Interesting but insufficient data. Not at all clear how they reached their conclusions. How, for example, could they tell what the dream content was or what real life incidents it related to?

More news stories

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.