New gene may offer clues to infertility in both cows and women

Oct 29, 2007

A newly identified gene that controls embryo development in cows may someday offer clues into the cause of infertility in women.

A team of researchers from Michigan State University led by George Smith, associate professor of animal science, has discovered that the new egg-specific gene, JY-1, is necessary for embryonic development in dairy cows. The research is reported in the Oct. 29 online issue of the Proceedings of the National Academy of Sciences.

Besides potentially offering the dairy industry more solutions for the infertility problem that costs it more than $1 billion per year, the new gene provides clues into the egg's role in embryo development and may ultimately provide new options for the more than 9.3 million women treated annually for fertility problems.

According to Smith, cows are a better model for human fertility research than the standard mouse model. Like women, cows usually release a single egg and give birth to one offspring at a time. Mice, in contrast, release multiple eggs and give birth to litters of pups.

"Our research focus is infertility in dairy cows," said Smith. "We want to understand the role of egg quality in infertility and create new solutions for dairy producers to manage their biggest problem. But there could certainly be human implications."

Smith and his team, which includes former students Anilkumar Bettegowda, a PhD student in Smith’s lab, and Jianbo Yao, a fellow in the MSU Center for Animal Functional Genomics, know the bovine chromosome where the JY-1 gene is located. A similar gene is located on the matching chromosome in humans but does not appear to be functional.

"There may be other related genes in humans that perform the same function as JY-1," Smith said. "We know this gene is necessary for cow embryos to develop, so it makes sense that humans have a related gene with a similar function."

Infertility and other reproductive problems are one of the dairy industry's biggest concerns. Dairy cows must become pregnant to produce milk. So if a cow can't get pregnant or can't maintain a pregnancy, the farmer suffers not only the loss of the milk, but the loss of the animal and the cost of replacing her.

"We now know the JY-1 gene is required for embryo development in dairy cows," Smith said. "Our next steps are to determine how the gene is regulated and how different levels of the protein affect fertility. There are still a lot of unknowns, but this is the first piece of the puzzle."

Source: Michigan State University

Explore further: Innovative 'genotype first' approach uncovers protective factor for heart disease

add to favorites email to friend print save as pdf

Related Stories

Cow manure harbors diverse new antibiotic resistance genes

Apr 22, 2014

Manure from dairy cows, which is commonly used as a farm soil fertilizer, contains a surprising number of newly identified antibiotic resistance genes from the cows' gut bacteria. The findings, reported in mBio the online ...

Cow fertility – not so black and white

Feb 28, 2014

Holstein cattle - the black-and-white dairy cows you might see in a child's picture book - have been bred in northern Europe for hundreds of years. Over the last few decades, better management and selective breeding of the ...

Genetic testing to produce more offspring

Jan 09, 2014

A small anomaly with massive consequences: Researchers have discovered a genetic defect that makes breeding bulls infertile. To verify the mutation, researchers from Technische Universität München used ...

Important mutation discovered in dairy cattle

Jan 03, 2014

Scientists have discovered a mutation with a built-in dilemma for dairy cattle breeders. The deleted gene sequence has a positive effect on milk yield but causes embryonic death in dairy cattle.

Recommended for you

Study clarifies parents as source of new disease mutations

Jul 31, 2014

Scientists have long speculated that mosaicism – a biological phenomenon, in which cells within the same person have a different genetic makeup – plays a bigger role in the transmission of rare disease mutations than ...

How black truffles deal with the jumpers in their genome

Jul 31, 2014

The black truffle uses reversible epigenetic processes to regulate its genes, and adapt to changes in its surroundings. The 'methylome' - a picture of the genome regulation taking place in the truffle, is published in the ...

Gene research targets scarring process

Jul 28, 2014

Scientists have identified three genes that may be the key to preventing scar formation after burn injury, and even healing existing scars.

User comments : 0