Insulin's brain impact links drugs and diabetes

Oct 17, 2007

Insulin, long known as an important regulator of blood glucose levels, now has a newly appreciated role in the brain.

Vanderbilt University Medical Center researchers, working with colleagues in Texas, have found that insulin levels affect the brain’s dopamine systems, which are involved in drug addiction and many neuropsychiatric conditions.

In addition to suggesting potential new targets for treating drug abuse, the findings raise questions as to whether improper control of insulin levels – as in diabetes – may impact risk for attention deficit hyperactivity disorder (ADHD) or influence the effectiveness of current ADHD medications.

The study, led by Aurelio Galli, Ph.D., in the Center for Molecular Neuroscience and Calum Avison, Ph.D., in the Institute of Imaging Science (VUIIS), appears online this week in the Public Library of Science Biology (PLoS Biology).

The psychostimulant drugs amphetamine and cocaine, as well as related medications for ADHD, block the reuptake of the neurotransmitter dopamine by dopamine transporters (DATs) and increase the level of dopamine signaling. Some of these compounds, including amphetamine, also cause a massive outpouring of dopamine through DATs.

The resulting surge of synaptic dopamine alters attention, increases motor activity and plays an important role in the addictive properties of psychostimulants.

But the link between insulin status and dopaminergic function is not readily apparent.

“In the 1970s, there were articles showing that, in animals with type 1 diabetes, psychostimulants like amphetamine would not increase locomotor behavior,” said Galli, associate professor of Molecular Physiology and Biophysics. “We didn’t have a clear understanding of why that was happening.”

This sparked Galli and colleagues to investigate the link between insulin signaling and amphetamine action.

Using a rat model of type 1 – or juvenile – diabetes in which insulin levels are depleted, Galli’s group assessed the function of the dopaminergic pathway in the striatum, an area of the brain rich in dopamine.

In the absence of insulin, amphetamine-induced dopamine signaling was disrupted, they found. Dopamine release in the striatum was severely impaired and expression of DAT on the surface of the nerve terminal – where it normally acts to inactivate dopamine – was significantly reduced.

The lack of the protein on the plasma membrane prevents the amphetamine-induced increase in extracellular dopamine, and in turn, amphetamine fails to activate the dopamine pathways that stimulate reward, attention and movement, Galli noted.

The researchers then restored insulin by pulsing the hormone back into the brain of the diabetic animals and found that the system returns to normal, indicating that the lack of insulin in the striatum directly affected amphetamine action.

To connect the physiological findings to activity in the intact brain, collaborators in the VUIIS, led by Avison, developed a probe for brain DAT activity using functional magnetic resonance imaging (fMRI).

“You can do molecular dissection in very well defined model systems and break the system down into its constituents,” said Avison, professor of Radiology and Radiological Sciences, and professor of Pharmacology. “But the question is: how does that relate to the intact brain? What’s the relevance to overall functioning in the intact system?”

Working with Galli and Avison, Jason Williams, Ph.D., used fMRI to demonstrate that in normal, healthy rats with plenty of insulin, amphetamine increased neural activity in the striatum. But in diabetic animals, activity in the striatum was suppressed.

“This finding is in vivo evidence that, in the intact diabetic rat, loss of insulin has compromised DAT trafficking to the plasma membrane,” Avison said. “These experiments show that there is likely a strong interplay between these important dopamine neurotransmitter systems and insulin signaling mechanisms, which we know are altered in diabetes”

The results are some of the first to link insulin status and dopaminergic brain function and hold several implications for human health and disease.

“This is really the first mechanistic connection in vivo between diabetes and amphetamine action,” Galli said. “This offers a completely new perspective on the influence of this disease (diabetes) on brain function, as well as diseases with altered dopamine signaling, such as schizophrenia and ADHD.”

The findings suggest that ADHD risk may have an insulin-dependent component and that control of insulin levels and response to the hormone may be an important determinant of amphetamine efficacy in patients with ADHD, Galli noted.

“We have described a novel mechanism by which diabetes may affect brain function.”

Source: Vanderbilt University Medical Center

Explore further: New compounds protect nervous system from the structural damage of MS

add to favorites email to friend print save as pdf

Related Stories

Study shows troubling rise in use of animals in experiments

7 hours ago

Despite industry claims of reduced animal use as well as federal laws and policies aimed at reducing the use of animals, the number of animals used in leading U.S. laboratories increased a staggering 73 percent from 1997 ...

NY surveying banks on cyber security defenses

10 hours ago

(AP)—New York financial regulators are considering tougher cyber security requirements for banks to mandate more complex computer sign-ins and certifications from the contractors of their cyber defenses, the state's top ...

Life-saving train design is rarely used

10 hours ago

(AP)—Nearly a decade ago, the U.S. secretary of transportation stood at the site of a horrendous commuter train crash near downtown Los Angeles and called for the adoption of a new train car design that ...

Climate change may flatten famed surfing waves

11 hours ago

On a summer day in 1885, three Hawaiian princes surfed at the mouth of the San Lorenzo River on crudely constructed boards made from coastal redwoods, bringing the sport to the North American mainland.

Recommended for you

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.