Discovery of New Antiviral Mechanism in Mammals May Improve Treatment of Hepatitis C Infections

Oct 17, 2007

A team of researchers led by biologists at the University of California, San Diego has discovered a completely new mechanism that mammalian cells employ to fight infections of the Hepatitis C virus, which affects approximately 2.7 million Americans and 170 million people worldwide.

The achievement, detailed in a paper published in the October 18 issue of the journal Nature, could improve current antiviral regimens or result in new treatments that are more effective and possess fewer detrimental side effects for those with the Hepatitis C virus infection, which frequently leads to liver cirrhosis and/or liver cancer.

“Approximately two percent of the human population worldwide is infected with Hepatitis C virus,” said Michael David, an associate professor of biological sciences at UC San Diego who headed the research team. “And about 50 to 80 percent of those people develop persistent infections and are at great risk of developing liver cancer.”

The only approved therapy for Hepatitis C is alpha-interferon, a protein produced by animal cells when invaded by viruses that induces healthy cells to manufacture enzymes that counter the infection. Often alpha-interferon is used in combination with an antiviral drug called ribavirin. However, only 40 to 80 percent of patients respond to this therapy and about half of those who do respond relapse once interferon treatments are stopped. Only about 25 percent of those treated with interferon, which can also induce flu-like symptoms and kidney damage in some patients, rid themselves of the viral infections. Explaining these varying response rates is difficult, since scientists do not fully understand the mechanisms used by alpha-interferon to fight off Hepatitis C virus infection.

What David and his team discovered is that microRNAs, short strands of RNA that interfere with the expression of specific genes, may also be effective against the Hepatitis C virus, because they are used by mammalian cells to reduce the replication of the virus. Their discovery comes as a surprise because while microRNA interference has been known to occur as a defense mechanism in plants and invertebrates, many scientists doubted it was employed by mammalian cells.

David and his group began by identifying microRNAs whose expression is controlled by alpha-interferon, then used computer prediction to identify potentially affected viral RNAs. Hepatitis C virus emerged as a prime candidate and the UCSD researchers--in collaboration with Hepatitis expert Francis Chisari of The Scripps Research Institute--demonstrated that several alpha-interferon induced microRNAs are able to potently inhibit viral infection and replication.

“This is an entirely new antiviral mechanism in mammalian organisms,” said David. “Use of synthetic microRNAs has become a promising strategy of antiviral treatment. However, selecting the ‘right’ sequence is crucial in order to avoid unwanted and potentially dangerous side effects. The microRNAs used by alpha-interferon have been selected by evolution for efficacy and safety,and might therefore provide a sound basis for the generation of new synthetic antivirals.”

“Now that we have identified this new antiviral pathway or mechanism, pharmaceutical companies may be able to design a more effective therapy against the Hepatitis C virus,” said Irene Pedersen, a project scientist working in David’s laboratory who is the first author of the paper.

Other co-authors of the paper are Francis Chisari, Guofeng Cheng and Stefan Wieland of The Scripps Research Institute and Carlo Croce and Stefano Volinia of Ohio State University. The research was supported by grants from the National Institutes of Health.

Source: University of California, San Diego

Explore further: Missing protein restored in patients with muscular dystrophy

add to favorites email to friend print save as pdf

Related Stories

Neuron circuit may enable pitch perception applications

3 minutes ago

The first FitzHugh-Nagumo neuron circuit designed to include noise and exhibit the Ghost Stochastic Resonance effect has been presented by researchers from Université de Bourgogne in France. Their circuit ...

Why global warming is taking a break

23 minutes ago

The average temperature on Earth has barely risen over the past 16 years. ETH researchers have now found out why. And they believe that global warming is likely to continue again soon.

Activists urge EU to scrap science advisor job

33 minutes ago

Nine major charities urged the European Commission on Tuesday to scrap a science advisor position it says puts too much power over sensitive policy into the hands of one person.

Recommended for you

Student seeks to improve pneumonia vaccines

16 hours ago

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

18 hours ago

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

Better living through mitochondrial derived vesicles

Aug 19, 2014

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

Aug 19, 2014

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

User comments : 0