New molecules discovered that block cancer cells from modifying cell DNA

Oct 11, 2007

Researchers have discovered new small molecules that may prevent prostate cancer cells from turning off normal genes in a process that transforms normal cells into cancer cells. This significant discovery in the field of epigenetics has immediate implications in the development of new diagnostic tests and cancer medications. The findings were presented today at the Prostate Cancer Foundation’s annual Scientific Retreat.

pigenetics refers to changes to genes other than changes to the DNA sequence itself, such as the addition of molecules to the DNA strand. While the development of cancer can arise from defective or mutated genes, it can also arise from these changes that can actually prevent a cell from acting as it should. Cancer cells exploit this process, putting some genes in “cold storage” or “turned off” by modifying the cell DNA in a process known as methylation.

Lead researcher William Nelson, M.D., Ph.D., Professor of Oncology and Urology at the Johns Hopkins Kimmel Cancer Center, explained the findings. “One of the proteins in the cell that triggers this process is called a methyl-CpG binding protein, or MBD. We have discovered an antagonist of MBD2 that keeps this protein from binding to methylated genes. If the protein can’t bind to the gene, then it can’t keep the gene ‘turned off’ and the gene is turned back on – able to act in the way it is supposed to.”

Nelson noted that the discovery is particularly exciting because of previous research that shows the importance of being able to alter the methylation process in DNA. When mice were developed without the gene that permits this process, they don’t develop cancer. When the gene is removed from cancer cells, they “turn on” genes again in appropriate ways. “The small molecules that we’ve discovered mimic this process, so they may be very exciting lead candidates for the next generation of drugs that may help restore gene function in prostate cancer,” said Nelson.

“This entire field of exploration has been tantalizing for a decade,” said Nelson, “but has only begun to deliver fruit in just the past couple of years. This mechanism of action permits us to look for much more targeted therapies for prostate cancer, and for other cancers as well, such as breast cancer.”

The promise of this field is evident in the current pipeline of diagnostic and therapeutic products in development. There are diagnostic tests being tested that focus on detecting the methylated DNA, which would permit prostate cancer diagnosis at an earlier stage and in a more precise manner. There is also a first generation of FDA-approved medications that work to reverse the methylation process in cancer cells. They include azacitine (Vidaza) and decitabine (Dacogen), both for the treatment of myelodysplastic syndrome, diseases in which the production of blood cells by the bone marrow is disrupted. Vorinostat (Zolinza) also works to turn back on silenced genes, and is approved for use in cutaneous T cell lymphomas.

Dr. Nelson noted that the Prostate Cancer Foundation funding was essential for the research that resulted in this discovery. “PCF supported our research at a time when it was a very new idea. Their investment permitted us to make critical discoveries that have not only put us along the pathway this field -- hopefully one day resulting in new drugs -- but that also allowed us to secure competitive research funding from the National Cancer Institute,” explained Nelson.

Source: GYMR

Explore further: Amgen says a study found its cancer drug more effective than rival drug

add to favorites email to friend print save as pdf

Related Stories

Scientists find clues to cancer drug failure

Mar 02, 2015

Cancer patients fear the possibility that one day their cells might start rendering many different chemotherapy regimens ineffective. This phenomenon, called multidrug resistance, leads to tumors that defy ...

Ultra-small block 'M' illustrates big ideas in drug delivery

Feb 26, 2015

By making what might be the world's smallest three-dimensional unofficial Block "M," University of Michigan researchers have demonstrated a nanoparticle manufacturing process capable of producing multilayered, precise shapes.

Skeleton of cells controls cell multiplication

Feb 26, 2015

A research team from Instituto Gulbenkian de Ciencia (IGC; Portugal), led by Florence Janody, in collaboration with Nicolas Tapon from London Research Institute (LRI; UK), discovered that the cell's skeleton ...

Recommended for you

Genetic modification aids cancer drug discovery

3 hours ago

Genetically modifying cancer cells can aid in clarifying new cancer drugs' mechanism of action, according to a new study by researchers at KU Leuven's Laboratory of Virology and Chemotherapy (Rega Institute).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.