Crystal structure enables tailoring of pharmaceuticals against asthma

Jul 16, 2007

Researchers at Karolinska Institutet in Sweden have managed to elucidate the crystal structure of a human membrane protein – LTC4 synthase – which has a major influence on the development of asthma. LTC4 synthase is extremely difficult to analyze, and previously only low resolution information has been available on two membrane protein structures from human. The scientists now believe that their work will enable the development of new and better therapeutics against inflammations in the pulmonary tract.

Asthma attacks are caused by an acute inflammatory reaction in the airways, a reaction that is largely due to actions of LTC4 synthase. For this reason asthma medicines often aim at blocking the downstream effects of LTC4 synthase. However, there is a need for new pharmaceutical alternatives, since not all patients respond to the existing medicines.

Scientists at the Department of Medical Biochemistry and Biophysics have now, with the help of the two EU networks “EICOSANOX” and “E-Mep”, elucidated the three dimensional structure of the LTC4 synthase at 2.0 Å resolution (1 Å = 1 Ångström = 10-10 m = 0,000 000 000 1 m). It is clear from the structure that the protein has three identical subunits, each of them consisting of four spiral structures that span the nuclear membrane. Also the exact position and characteristics of the active sites, where activating or blocking molecules can bind, have been identified. With this knowledge it is now possible to tailor new molecules that can block the LTC4 synthase.

The new results are also very important as they can lead the way for the development of new and more effective therapeutics against other diseases. Some 40 % of the proteins of interest for pharmaceutical developments are membrane proteins. Until now detailed structural information on these proteins has been absent, and therefore it has been difficult to fully understand their function. The present study is likely to lead the way for the determination of structures of other human membrane proteins. The elucidation of more membrane protein structures will help us understand fundamental processes that take place in the cell membranes.

Facts: Proteins consist of a chain of amino acids. The length of this chain can range from a few to thousands of amino acids. The chain is then folded in a characteristic way and the 3-D structure can bind different molecules. Determining a protein structure and its biochemical characteristics helps us understand its function, and to design blocking or activating molecules which can serve as medicines. A known protein structure therefore makes it easier and faster to develop new pharmaceuticals.

Source: Karolinska Institutet

Explore further: Syria hit by flesh-eating maggot disease

add to favorites email to friend print save as pdf

Related Stories

Form Devices team designs Point as a house sitter

11 hours ago

A Scandinavian team "with an international outlook" and good eye for electronics, software and design aims to reach success with what they characterize as "a softer take" on home security. Their device is ...

Man pleads guilty in New York cybercrime case

14 hours ago

A California man has pleaded guilty in New York City for his role marketing malware that federal authorities say infected more than a half-million computers worldwide.

NASA issues 'remastered' view of Jupiter's moon Europa

23 hours ago

(Phys.org) —Scientists have produced a new version of what is perhaps NASA's best view of Jupiter's ice-covered moon, Europa. The mosaic of color images was obtained in the late 1990s by NASA's Galileo ...

Dish restores Turner channels to lineup

23 hours ago

Turner Broadcasting channels such as Cartoon Network and CNN are back on the Dish network after being dropped from the satellite TV provider's lineup during contract talks.

Recommended for you

Syria hit by flesh-eating maggot disease

45 minutes ago

Three cases of myiasis have been reported near Damascus, marking the first appearance of the flesh-eating maggot disease in Syria, UN health experts said Friday.

Sperm can carry Ebola for 82 days: WHO

2 hours ago

Sperm can carry the Ebola virus for at least 82 days, the World Health Organization said Friday, urging men recovering from the disease to use condoms for three months after the onset of symptoms.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.