One man's junk may be a genomic treasure

Jul 12, 2007

Scientists have only recently begun to speculate that what’s referred to as “junk” DNA – the 96 percent of the human genome that doesn’t encode for proteins and previously seemed to have no useful purpose – is present in the genome for an important reason. But it wasn’t clear what the reason was. Now, researchers at the University of California, San Diego (UCSD) School of Medicine have discovered one important function of so-called junk DNA.

Genes, which make up about four percent of the genome, encode for proteins, “the building blocks of life.” An international collaboration of scientists led by Michael G. Rosenfeld, M.D., Howard Hughes Medical Investigator and UCSD professor of medicine, found that some of the remaining 96 percent of genomic material might be important in the formation of boundaries that help properly organize these building blocks. Their work will be published in the July 13 issue of the journal Science.

“Some of the ‘junk’ DNA might be considered ‘punctuation marks’ – commas and periods that help make sense of the coding portion of the genome,” said first author Victoria Lunyak, Ph.D., assistant research scientist at UCSD.

In mice, as in humans, only about 4 percent of the genome encodes for protein function; the remainder, or “junk” DNA, represents repetitive and non-coding sequences. The research team studied a repeated genomic sequence called SINE B2, which is located on the growth hormone gene locus, the gene related to the aging process and longevity. The scientists were surprised to find that SINE B2 sequence is critical to formation of the functional domain boundaries for this locus.

Functional domains are stretches of DNA within the genome that contain all the regulatory signals and other information necessary to activate or repress a particular gene. Each domain is an entity unto itself that is defined, or bracketed, by a boundary, much as words in a sentence are bracketed by punctuation marks. The researchers’ data suggest that repeated genomic sequences might be a widely used strategy used in mammals to organize functional domains.

“Without boundary elements, the coding portion of the genome is like a long, run-on sequence of words without punctuation,” said Rosenfeld.

Decoding the information written in “junk” DNA could open new areas of medical research, particularly in the area of gene therapy. Scientists may find that transferring encoding genes into a patient, without also transferring the surrounding genomic sequences which give structure or meaning to these genes, would render gene therapy ineffective.

Source: University of California - San Diego

Explore further: Researchers investigate possible colon cancer risk for new generation of weight-loss drugs

add to favorites email to friend print save as pdf

Related Stories

A single target for microRNA regulation

6 hours ago

It has generally been believed that microRNAs control biological processes by simultaneously, though modestly, repressing a large number of genes. But in a study published in Developmental Cell, a group ...

The origins of polarized nervous systems

59 minutes ago

(Phys.org)—There is no mistaking the first action potential you ever fired. It was the one that blocked all the other sperm from stealing your egg. After that, your spikes only got more interesting. Waves ...

Vaccines from a reactor

Mar 02, 2015

In the event of an impending global flu pandemic, vaccine production could quickly reach its limits, as flu vaccines are still largely produced in embryonated chicken eggs. Udo Reichl, Director at the Max ...

How is the membrane protein folded?

Mar 02, 2015

A key factor in the biosynthesis and stable expression of multi-pass transmembrane proteins was discovered, and its loss is thought to cause retinal degeneration. The factor works especially for multi-pass ...

Parasite provides clues to evolution of plant diseases

Mar 02, 2015

A new study into the generalist parasite Albugo candida (A. candida), cause of white rust of brassicas, has revealed key insights into the evolution of plant diseases to aid agriculture and global food security.

Recommended for you

Newly discovered hormone mimics the effects of exercise

9 hours ago

Scientists at the USC Leonard Davis School of Gerontology have discovered a new hormone that fights the weight gain caused by a high-fat Western diet and normalizes the metabolism - effects commonly associated ...

Highly sensitive detection of malaria parasites

12 hours ago

New assays can detect malaria parasites in human blood at very low levels and might be helpful in the campaign to eradicate malaria, reports a study published this week in PLOS Medicine. An international team l ...

How fat breakdown contributes to insulin resistance

18 hours ago

New research from the University of Virginia School of Medicine has shed light on how chronic stress and obesity may contribute to type 2 diabetes. The findings point the finger at an unexpected biological perpetrator – ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.