Neutral evolution has helped shape our genome

Jul 09, 2007

Johns Hopkins researchers have added to the growing mound of evidence that many of the genetic bits and pieces that drive evolutionary changes do not confer any advantages or disadvantages to humans or other animals.

“For a long time, the basic belief of evolution was that all random genetic changes that manage to stick around have some selective advantage,” says Nicholas Katsanis, Ph.D., Associate Professor at Hopkins’ Institute of Genetic Medicine. “But our work adds to the case that frequently, we are what we are largely due to random changes that are completely neutral.”

“I am not at all discounting the role of natural selection, the persistence of genetic changes that confer some advantage,” Katsanis adds, “because it has been instrumental. What this study does is to reinforce and highlight the equal, and in some cases greater, importance of neutral genetic drift.”

Describing their contributions to genetic drift online in PLoS Genetics, Katsanis says the Hopkins experiments demonstrate that one of the major architectural markers of the human genome, DNA repeat elements that make up over 40 percent of our genome, rose to prominence without offering any benefits to the organism it inhabits. Repeat elements are fragments of DNA containing the same repetitive sequence of chemical base pairs several hundred times.

Katsanis and his team first stumbled onto one type of repeat element while looking at genes associated with Bardet Biedl syndrome, a rare disorder of substantial interest to the lab. While hunting for new genes, they found portions of DNA that had been copied from the mitochondria, the energy-making apparatus of human cells that has its own small genome. These mitochondrial sequences are known as numts.

When they expanded their study across the whole human genome, they found more than 1200 such pieces of mitochondrial DNA of various lengths embedded into chromosomes. While chimps have a comparable number, mice and rats only have around 600 numts. Since they increase in frequency as species advance, it suggested there was some evolutionary purpose to keeping them around.

Strikingly, however, none of these numts contained the blueprint (an actual gene) to make a protein that does anything, nor did they seem to control the function of any nearby genes. “At best, it seems numts are a neutral part of our genome,” says Katsanis. “If anything, they may be mildly negative since long repeat sequences can be unstable or get inserted inside genes and disrupt them.”

The researchers believe they have uncovered a possible reason why these potentially damaging but mostly neutral bits of DNA accumulate over time by comparing the sequences of human numts with those in different animals. How closely the different species’ sequences match can provide an estimate of when that particular sequence got inserted into the ancestor of the human genome.

Their calculations revealed that most numts became embedded in our genome over a 10-million-year period centered roughly 54 million years ago – right around the time when the first primates emerged. “When new species emerge, their numbers and therefore their genetic differences are very small,” Katsanis notes. “This creates a genetic bottleneck during which any changes in the genome will either get eliminated quickly or spread to the whole population quickly.”

Katsanis proposes that numts, being “neutral,” were generally at low levels in ancient mammals, but during the primate emergence 54 million years ago, they accumulated and spread through the small early primate populations precisely because they were not detrimental enough to be eliminated. Then, as these populations expanded, numts reached stable but higher frequencies.

Source: Johns Hopkins Medical Institutions

Explore further: Science of romantic relationships includes gene factor

add to favorites email to friend print save as pdf

Related Stories

Study: DNA barcoding in danger of 'ringing up' wrong species

Aug 25, 2008

DNA barcoding is a movement to catalog all life on earth by a simple standardized genetic tag, similar to stores labeling products with unique barcodes. The effort promises foolproof food inspection, improved border security, ...

Domestic cat genome sequenced

Oct 31, 2007

A report that appears in the scientific journal Genome Research details the first assembly, annotation, and comparative analysis of the domestic cat genome (Felis catus).

Recommended for you

Science of romantic relationships includes gene factor

14 hours ago

(Medical Xpress)—Adolescents worry about passing tests, winning games, lost phones, fractured bones—and whether or not they will ever really fall in love. Three Chinese researchers have focused on that ...

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

Nov 21, 2014

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

Nov 20, 2014

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.