Study outlines how stroke, head injury can increase risk of Alzheimer's disease

Jun 06, 2007

Researchers from the MassGeneral Institute for Neurodegenerative Disorders (MGH-MIND) have discovered how the death of brain cells caused by a stroke or head injury may cause generation of amyloid-beta protein – the key component of senile plaques seen in the brains of patients with Alzheimer's disease. Their report appears in the June 7 issue of the journal Neuron.

“We have discovered how a stroke can trigger a series of biochemical events that increase amyloid-beta production in the brain,” says Giuseppina Tesco, MD, PhD, of the MGH-MIND Genetics and Aging Research Unit, the paper’s lead author. “These findings raise the prospect of novel therapies that could interfere with this process and reduce the risk of Alzheimer’s disease in stroke or head trauma patients.”

It has been known for several years that strokes and head injuries can increase the risk of Alzheimer’s disease, but the mechanism underlying that increased risk has not been understood. Alzheimer's disease is characterized by plaques within the brain of amyloid-beta protein, which is toxic to brain cells. Amyloid-beta is formed when the larger amyloid precursor protein (APP) is clipped by two enzymes – beta-secretase, also known as BACE, and gamma-secretase – which releases the amyloid-beta fragment. The usual processing of APP by an enzyme called alpha-secretase produces an alternative, non-toxic protein.

The MGH-MIND team previously reported that cellular BACE levels are normally controlled by the enzyme’s breakdown in compartments called lysosomes, a process that is disrupted if a molecular signal on the enzyme is altered. That signal binds to GGA proteins, which are required for the transport of several types of enzymes into lysosomes. One of these proteins, GGA3, can be degraded by caspase, an enzyme takes part in the cell-death process called apoptosis.

In a series of experiments the MGH-MIND researchers revealed how cell death caused by a brain injury, including a stroke, can lead to the production of amyloid-beta. Damaged brain cells undergo apoptosis, releasing caspase which also breaks down GGA3. Without enough GGA3 to help transport BACE to lysosomes, levels of BACE rise and lead to increased amyloid-beta production. Amyloid-beta itself is toxic to brain cells, so it may cause further apoptosis, leading to a vicious cycle of continued cell death and amyloid-beta production.

The importance of GGA3’s control of BACE levels was supported by the observation that, in brain tissue from Alzheimer’s patients, reductions in GGA3 corresponded with elevations in BACE, particularly in those areas most affected by the disease.

“Our findings also shed new light on how the aged brain becomes more vulnerable to AD, since any insult to the brain – head injury, stroke, or the mini-strokes called TIAs – can set off this process and turn up BACE activity,” says Rudolph Tanzi, PhD, director of the Genetics and Aging Research Unit and senior author of the Neuron paper. “Therapies that protect GGA3 from caspase cleaving might be able to reduce the risk of AD or the more transient type of dementia that can occur after such injuries.” Tanzi is a professor of Neurology at Harvard Medical School, where Tesco is an assistant professor.

Source: Massachusetts General Hospital

Explore further: Growing a blood vessel in a week

add to favorites email to friend print save as pdf

Related Stories

US company sells out of Ebola toys

6 hours ago

They might look tasteless, but satisfied customers dub them cute and adorable. Ebola-themed toys have proved such a hit that one US-based company has sold out.

UN biodiversity meet commits to double funding

6 hours ago

A UN conference on preserving the earth's dwindling resources wrapped up Friday with governments making a firm commitment to double biodiversity aid to developing countries by 2015.

Partial solar eclipse over the U.S. on Thursday, Oct. 23

7 hours ago

People in most of the continental United States will be in the shadow of the Moon on Thursday afternoon, Oct. 23, as a partial solar eclipse sweeps across the Earth. For people looking through sun-safe filters, from Los Angeles, ...

Recommended for you

Growing a blood vessel in a week

11 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

14 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0