How sneaky HIV escapes cells

Jun 05, 2007

Like hobos on a train, HIV, the virus that causes AIDS, uses a pre-existing transport system to leave one infected cell and infect new ones, Hopkins scientists have discovered. Their findings, published in the June issue of Plos Biology, counter the prevailing belief that HIV and other retroviruses can only leave and enter cells by virus-specific mechanisms.

“It appears that cells make HIV and other retroviruses by a naturally occurring export mechanism,” says Stephen Gould, Ph.D., Professor of Biological Chemistry at Johns Hopkins. Cells normally export certain membrane-bound molecules to the outside world by means of small sacs known as exosomes. By studying human T-cells under a microscope, Gould, Yi Fang, Ning Wu, and other members of his team discovered what’s needed to qualify proteins for exosomal travel.

“Surprisingly, all that’s needed for a protein to get out of the cell in exosomes are the ability to clump together and attach to the cell’s membrane,” Gould says.

In one experiment, Gould and his team added chemicals to normal human cells that force nearby proteins together into a clump, and this was enough to get them sent out of the cell in exosomes. If they added a tether to force naturally-clumping proteins inside the cell to the membrane, the proteins met a similar exosomal deportation fate.

The major HIV protein ‘Gag’ has both of these properties that cells sense in selecting exosomal cargoes. When the researchers removed the tethers or clumping signals from Gag it could no longer get out of the cell. However, if they were replaced with synthetic membrane anchors and clumping domains Gag regained its ability to get out of cells in exosomes.

Gould speculates that cells may have initially developed exosomes as a quality control mechanism to get rid of clumped proteins, which are generally broken and useless. However, just as retroviruses exploit other cell processes for their own ends, it now appears they rely on exosomes to get out of infected cells and infect fresh cells. As such, drugs that interfere with exosome formation might be one way to inhibit HIV infections.

“Viruses like HIV use pathways we barely recognize, much less understand,” Gould says. “Our paper highlights the importance of studying their basic biochemistry and cell biology, which can yield a better understanding of normal human biology as well as identify new avenues in the fight against human disease.”

Source: Johns Hopkins Medical Institutions

Explore further: Latent HIV may lurk in 'quiet' immune cells, research suggests

add to favorites email to friend print save as pdf

Related Stories

Using viruses to find the cellular Achilles heel

Jan 22, 2015

Back-to-back studies from researchers at the Gladstone Institutes have exposed new battle tactics employed by two deadly viruses: hepatitis C (HCV) and the Kaposi's sarcoma-associated herpesvirus (KSHV). Published in the ...

The year ahead in science

Jan 05, 2015

Some serious groundwork has been laid. Some amazing instruments are turning on. Some incredible destinations are in sight. If you ask us, 2015 is going to be an awesome year in science.

Recommended for you

HIV testing yields diagnoses in Kenya but few seek care

Jan 29, 2015

Between December 2009 and February 2011, health workers with the AMPATH Consortium sought to test and counsel every adult resident in the Bunyala subcounty of Kenya for HIV. A study in the journal Lancet HIV reports that the campaign yielded more than 1,300 new positive diagnoses, but few of those new ...

The adaptability of pathogens

Jan 28, 2015

Drug-resistant HIV viruses can spread rapidly. This is the conclusion of a study conducted as part of the SWISS HIV Cohort Study, which is supported by the SNSF. Only the continuous introduction of new drugs can stop the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.