Study provides first link between 2 major Parkinson's genes

Apr 04, 2011

As Parkinson's Awareness Month gets underway, a Canadian-led international study is providing important new insight into Parkinson's disease and paving the way for new avenues for clinical trials. The study, led by Dr. Michael Schlossmacher in Ottawa, provides the first link between the most common genetic risk factor for Parkinson's and the hallmark accumulation of a protein called alpha-synuclein within the brains of people with Parkinson's. It is published in the most recent edition of the journal Annals of Neurology.

"This study addresses a major riddle in Parkinson's disease," explains Dr. Schlossmacher, who holds the Canada Research Chair in Parkinson's disease at the Ottawa Hospital Research Institute and the University of Ottawa, and is also an active neurologist at The Ottawa Hospital. "Thanks to pioneering research done by geneticists in the United States and Israel, we've known for six years now that 10-12 per cent of people with Parkinson's have a mutation in one copy of a gene called glucocerebrosidase, or GBA. However, until now we have not understood how these mutations contribute to the disease and how they fit with other pieces of the puzzle, such as the accumulation of alpha-synuclein in the brain."

Alpha-synuclein has been likened to the "" of Parkinson's because it gradually accumulates in the brain as Parkinson's progresses. Affected show signs of injury, and when they die, this leads to the tremors, stiffness and slowness that are typically associated with Parkinson's disease.

Using a series of experimental laboratory models, Dr. Schlossmacher and his colleagues have now shown that the GBA mutations found in Parkinson's patients prevent brain cells from efficiently breaking down and removing alpha-synuclein.

"While the GBA mutations don't cause Parkinson's disease on their own, they do significantly increase the risk of developing the disease, probably by making people susceptible to the accumulation of alpha-synuclein," says Dr. Schlossmacher. "This could explain why people with GBA mutations frequently develop Parkinson's symptoms four to five years earlier than those without them."

"These findings are particularly exciting because if they are confirmed by other researchers, they could significantly accelerate the development of new treatments for Parkinson's," he adds. "Several companies have developed or are actively working on drugs that target GBA for another disease called Gaucher disease, and our research suggests that these drugs could potentially be useful in Parkinson's, and in a related disease called Lewy body dementia."

In addition to researchers in Ottawa, this study also involved researchers from Brigham & Women's Hospital at Harvard Medical School (where the Schlossmacher team first began to explore the link), Genzyme Corporation, Cincinnati Children's Hospital Medical Centre, Christian-Albrechts University and Purdue University. It was funded by the Canada Research Chairs Program, The Ottawa Hospital Department of Medicine, the Michael J. Fox Foundation, the National Institutes of Health (USA), and Genzyme Corporation.

Explore further: Study finds potential genetic link between epilepsy and neurodegenerative disorders

Provided by Ottawa Hospital Research Institute

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Toxicity mechanism identified for Parkinson's disease

Jan 02, 2009

Neurologists have observed for decades that Lewy bodies, clumps of aggregated proteins inside cells, appear in the brains of patients with Parkinson's disease and other neurodegenerative diseases.

Yeast holds clues to Parkinson's disease

Sep 09, 2010

Yeast could be a powerful ally in the discovery of new therapeutic drugs to treat Parkinson's disease says a scientist presenting his work at the Society for General Microbiology's autumn meeting in Nottingham today.

Unfolding pathogenesis in Parkinson's

Jan 19, 2011

The study, published in the Journal of Clinical Investigation, reveals that damaged alpha-synuclein proteins (which are implicated in Parkinson's disease) can spread in a 'prion-like' manner, an infection model previously descri ...

Study conclusively ties rare disease gene to Parkinson's

Oct 21, 2009

An international team led by a National Institutes of Health researcher has found that carriers of a rare, genetic condition called Gaucher disease face a risk of developing Parkinson's disease more than five times greater ...

Scientists find 5 new Parkinson's genes

Feb 02, 2011

Scientists have identified five new genes linked to Parkinson's disease in a large genetic analysis of the illness, according to a new study. After reviewing nearly 8 million possible genetic mutations, researchers pinpointed ...

Recommended for you

Study links enzyme to autistic behaviors

7 hours ago

Fragile X syndrome (FXS) is a genetic disorder that causes obsessive-compulsive and repetitive behaviors, and other behaviors on the autistic spectrum, as well as cognitive deficits. It is the most common ...

A new cause of mental disease?

12 hours ago

Astrocytes, the cells that make the background of the brain and support neurons, might be behind mental disorders such as depression and schizophrenia, according to new research by a Portuguese team from ...

Molecular basis of age-related memory loss explained

Jul 22, 2014

From telephone numbers to foreign vocabulary, our brains hold a seemingly endless supply of information. However, as we are getting older, our ability to learn and remember new things declines. A team of ...

The neurochemistry of addiction

Jul 22, 2014

We've all heard the term "addictive personality," and many of us know individuals who are consistently more likely to take the extra drink or pill that puts them over the edge. But the specific balance of ...

User comments : 0