New fusion gene plays role in some stomach cancers

Apr 06, 2011

A newly discovered hybrid gene appears to play a direct role in some stomach cancers, according to an international team of scientists led by researchers at Duke-NUS Graduate Medical School Singapore.

The hybrid gene is a fusion of two separate , and is one of the first described in , which is the most lethal malignancy worldwide after lung cancer. The disease kills an estimated 740,000 people a year, including nearly 11,000 annually in the United States.

The gene discovery may one day give doctors a more effective way to use current therapies, plus help researchers develop new drugs and diagnostic tools for gastric cancer.

"This is an extremely exciting area, as it opens up a potential role for fusion genes in solid cancer diagnostics and treatment, similar to the fundamental role they have played in the blood cancers," said Dr. Patrick Tan, associate professor in the Cancer and Stem Cell Biology Program at the Duke-NUS Graduate Medical School Singapore. Tan was principal investigator of the study published in the April 6, 2011, issue of the journal .

Tan said the research team -- which also included scientists from the National University of Singapore, National Cancer Centre of Singapore, the Genome Institute of Singapore, Yonsei University College of Medicine in Seoul, South Korea, and Howard University -- used a novel genomic approach to isolate the .

The technology is called genomic breakpoint analysis (GBA), which has been used to identify fusion genes in leukemia, but has had less success in pinpointing them in complex solid tumors.

By using the technology to home in on abnormal genes in 133 tumors and cell lines, the Singapore-based research group found evidence of a single genetic error that was common to four of the cancer samples.

Finding the error led the scientists to the CD44-SLC1A2 fusion gene, which resulted when two nearby genes blended into one. The SLC1A2 gene is associated with the metabolism of the amino acid glutamate, which can work like a fertilizer encouraging tumor growth and survival, while the CD44 gene serves as a sort of "on" switch.

Melded into one, the CD44-SLC1A2 hybrid appears to fuel stomach tumors. Tan's team estimates the fusion gene may be at work in up to 2 percent of stomach cancers.

"Using high-throughput genomic technologies such as sequencing and GBA, we are now finding that cancers do express many fusion genes," Tan said. "The current feeling is that while most of these are harmless and 'noise' from genomic instability, there can be cases, such as CD44-SLC1A2, where the fusion gene contributes actively to the cancer."

The finding could lead to improved therapies for this subset of stomach cancers. As part of the study, the researchers used a gene silencing approach to reduce the levels of CD44-SLC1A2 in cancer cell lines. They found that this caused a reduction in the glutamate levels of cancer cells, and made the cells more vulnerable to the effects of cisplatin, a common chemotherapy.

"It does suggest that drugs that inhibit SLC1A2 function could be used to sensitize tumors to chemotherapy," Tan said. "Such glutamate uptake inhibitors are available, and we are working very hard to test this possibility."

Explore further: Cancer patients need anxiety, depression screening

Related Stories

Recommended for you

Cancer patients need anxiety, depression screening

7 hours ago

(HealthDay)—It is important to recognize and treat anxiety or depression among cancer patients, according to a clinical guideline published online April 14 in the Journal of Clinical Oncology.

Pre-HPV vaccine, most oropharyngeal cancers HPV+

9 hours ago

(HealthDay)—Most oropharyngeal cancers in the United States diagnosed between 1995 and 2005 were positive for human papillomavirus (HPV), specifically HPV 16 or 18, according to a study published in the May issue of the ...

'Dustman' protein helps bin cancer cells

Apr 21, 2014

Cancer researchers have discovered a new 'dustman' role for a molecule that helps a drug kill cancer cells according to a study, published in the journal Proceedings of the National Academy of Sciences (PNAS) ...

User comments : 0

More news stories

Volitional control from optical signals

(Medical Xpress)—In their quest to build better BMIs, or brain-machine-interfaces, researchers have recently begun to look closer at the sub-threshold activity of neurons. The reason for this trend is that ...

Neuroimaging: Live from inside the cell

A novel imaging technique provides insights into the role of redox signaling and reactive oxygen species in living neurons, in real time. Scientists of the Technische Universität München and the Ludwig-Maximilians-Universität ...

Mantis shrimp stronger than airplanes

(Phys.org) —Inspired by the fist-like club of a mantis shrimp, a team of researchers led by University of California, Riverside, in collaboration with University of Southern California and Purdue University, ...