Youth at risk for obesity show greater brain activity in response to food

Mar 22, 2011

Do people overeat because they experience less reward from eating or because they experience more reward from eating? In the March 23, 2011 issue of The Journal of Neuroscience Oregon Research Institute (ORI) senior scientist Eric Stice, Ph.D. and colleagues, including Dana Small, Ph.D. from the J.B. Pierce Laboratory in New Haven Connecticut, provide possible answers to the chicken or egg dilemma of overeating.

Food intake produces dopamine release and the degree of pleasure from eating correlates with the amount of dopamine release. Studies have found that obese relative to lean humans have fewer dopamine (D2) receptors in the brain and it is thought that obese individuals overeat to compensate for this reward deficit.

However, a recent study from Stice and colleagues found that weight gain produced a blunted response to intake of palatable food (chocolate milkshake), suggesting that overeating may lead to reduced reward from food, rather than represent an initial vulnerability factor.

In a novel study using (fMRI) Stice's team compared the to food and monetary reward in lean adolescents at risk for obesity relative to lean adolescents not at risk for obesity. Results suggest that the initial vulnerability that gives rise to obesity may be elevated rather than blunted sensitivity of the brain's reward circuitry.

Study participants were 60 lean adolescents. The high-risk teens were children of two obese or overweight parents. The low-risk teens had two lean parents. Adolescent children of obese versus normal-weight parents show a fourfold increase in risk for obesity onset.

Using a brain imaging paradigm, investigators examined the extent to which reward circuitry (e.g., the dorsal striatum) was activated in response to the individual's consumption and anticipated consumption of chocolate milkshake. The team also used another paradigm to assess in response to receipt and anticipated receipt of money. Monetary reward is a general reinforcer and has been used frequently to assess reward sensitivity. High-risk youth showed greater activation in reward circuitry to receipt of both food and monetary reward, as well as greater activation in somatosensory regions in response to receipt of food.

"The findings are surprising," noted Stice. "They suggest that the initial vulnerability for overeating may be hyper-responsivity of reward circuitry to food intake. The fact that the same reward regions showed greater response to monetary reward is novel and implies that individuals at risk for obesity show greater responsivity to reward in general. These findings seem to challenge the widely accepted theory that it is a reward deficit that increases vulnerability to overeating."

Stice and his team also found that at-risk youth showed hyper-responsivity of somatosentory regions to , which plays a key role in sensing the fat content of food. These results suggest that individuals who are particularly sensitive to detecting high-fat foods may be at unique risk for overeating.

Explore further: Know the brain, and its axons, by the clothes they wear

add to favorites email to friend print save as pdf

Related Stories

Just expecting a tasty food activates brain reward systems

Jul 27, 2009

Research to be presented at the Annual Meeting of the Society for the Study of Ingestive Behavior (SSIB), the foremost society for research into all aspects of eating and drinking behavior, shows that exposing rats to a context ...

Route to obesity passes through tongue

Nov 26, 2008

Obesity gradually numbs the taste sensation of rats to sweet foods and drives them to consume larger and ever-sweeter meals, according to neuroscientists. Findings from the Penn State study could uncover a critical link between ...

Praise = money?

Apr 23, 2008

Why are we nice to others? One answer provided by social psychologists is because it pays off. A social psychological theory stated that we do something nice to others for a good reputation or social approval just like we ...

Brain's 'sixth sense' for calories discovered

Mar 26, 2008

The brain can sense the calories in food, independent of the taste mechanism, researchers have found in studies with mice. Their finding that the brain’s reward system is switched on by this “sixth sense” machinery ...

Recommended for you

Know the brain, and its axons, by the clothes they wear

Apr 18, 2014

(Medical Xpress)—It is widely know that the grey matter of the brain is grey because it is dense with cell bodies and capillaries. The white matter is almost entirely composed of lipid-based myelin, but ...

Turning off depression in the brain

Apr 17, 2014

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Rapid whole-brain imaging with single cell resolution

Apr 17, 2014

A major challenge of systems biology is understanding how phenomena at the cellular scale correlate with activity at the organism level. A concerted effort has been made especially in the brain, as scientists are aiming to ...

User comments : 0

More news stories

UAE reports 12 new cases of MERS

Health authorities in the United Arab Emirates have announced 12 new cases of infection by the MERS coronavirus, but insisted the patients would be cured within two weeks.

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...