Interventional radiologists provide hope in delaying growth, spread of breast cancer

Mar 29, 2011

The growth and spread of breast cancer tumors may be delayed with a promising treatment that combines two innovative strategies: blocking the enzyme needed to "energize" cancer cells and infusing a potent drug directly into the tumor, with minimum exposure to healthy tissues, indicate researchers at the Society of Interventional Radiology's 36th Annual Scientific Meeting in Chicago, Ill.

"Once breast cancer have been detected, current treatments (such as surgical resection or tumor removal) may be ineffective. We've found a way to keep a breast cancer tumor dormant—thus potentially increasing the likelihood that a tumor can be treated successfully," noted Jeff H. Geschwind, M.D., FSIR, professor of radiology, surgery and oncology and director of vascular and interventional radiology at Johns Hopkins University School of Medicine in Baltimore, Md. "Our study shows that an ultrasound-guided intra-tumoral treatment with a drug called 3-bromopyruvate (3-BrPA) may be a very promising new therapy for patients with breast cancer that delays tumor growth and spread," added Geschwind, who is also the director of the Interventional Radiology Center at Johns Hopkins University School of Medicine.

"Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer death in women in the United States," said Geschwind. It was estimated that 207,090 women would be diagnosed with—and 39,840 women would die of—cancer of the breast in 2010—thus affecting one in eight women during their lives. "The development of new treatment options for this lethal disease is imperative," said Geschwind, indicating that once metastasis is detected, a patient may have (on average) only 18 to 24 months to live.

Increased awareness and screening has increased the likelihood of diagnosing early-stage cancer tumors, and breast cancer is treated in several ways, depending on the kind of breast cancer and how far it has spread, said Geschwind. "However, a significant number of patients experience treatment failure, developing local tumor recurrence or metastatic disease after an initial response to treatments (like chemotherapy and radiation)," he explained. "Metastatic spread may occur in 50 percent of cases with apparently localized breast cancer, and nearly 30 percent of patients with lymph node-negative disease will develop distant metastases within five years—underlining the importance of the development of novel, targeted, minimally invasive treatment strategies for tumor control and prevention," he added.

In animal studies, the research team has shown how interventional radiologists are uniquely positioned to combine their basic science knowledge—in this case resulting in the exploitation of tumor metabolism as a target for breast cancer therapy—with their vast experience in minimally invasive treatment strategies. "Breast tumor cells depend on a metabolic pathway called glycolysis to generate the energy required for their malignant growth. By inhibiting a specific enzyme with the anti-glycolytic agent 3-BrPA, the energy production required for tumor cell growth and spread is blocked," said Geschwind. "Disrupt glycolysis and are unable to produce enough energy to survive," he said.

The researchers were then able to maximize the amount of drug delivered to a tumor by infusing the potent drug directly into the tumor—using imaging to guide them—and minimizing exposure of healthy tissue to the therapy, explained Geschwind. "The biological targeting abilities of anti-glycolytic treatment combined with an image-guided minimally invasive delivery strategy is a promising approach to reducing the growth and spread of breast cancer in patients," he emphasized.

"In our study, a statistically significant difference in volume was observed. Our results support the continuing development of this highly innovative interventional radiology approach for the safe and effective treatment of breast cancer," he added. "Before we can test our novel treatment strategy in individuals with , it is important to perform additional animal studies of a larger size to confirm the efficacy of the treatment and to verify that there are no toxic effects on the normal tissues," noted Geschwind.

Explore further: Blueprint for next generation of chronic myeloid leukemia treatment

add to favorites email to friend print save as pdf

Related Stories

Drug combination shrinks breast cancer metastases in brain

Dec 16, 2007

A combination of a "targeted" therapy and chemotherapy shrank metastatic brain tumors by at least 50 percent in one-fifth of patients with aggressive HER2-positive breast cancer, according to data presented by Dana-Farber ...

Breast cancer returns more often in black women

Oct 29, 2007

Contrary to previous studies, African-American women with early-stage breast cancer who have surgery to remove the cancer (lumpectomy) followed by radiation therapy have a higher chance of their cancer coming back in the ...

Genes set scene for metastasis

Apr 11, 2007

Biologists at Memorial Sloan-Kettering Cancer Center (MSKCC) have identified a set of genes expressed in human breast cancer cells that work together to remodel the network of blood vessels at the site of the primary tumor. ...

Recommended for you

User comments : 0