New insight into how environmental enrichment enhances memory

Mar 23, 2011

It is well established that environmental enrichment, providing animals with rich sensory, motor, and social stimulation, produces both dramatic increases in the number of synapses in the brain and enhanced learning. However, causal relationships between synapse formation and improved memory have not been definitively established. Now, a new study published by Cell Press in the March 24 issue of the journal Neuron introduces a valuable model system for investigating the role of synapse turnover in learning and memory in adult animals and elucidates mechanisms that link loss of existing synapses and the establishment of new synapses with improved learning.

"It had seemed likely that the powerful behavioral consequences of environmental enrichment involve enhanced synaptogenesis, but testing this hypothesis has been prevented by the absence of tools to specifically interfere with synaptogenesis processes in the adult," explains senior study author, Dr. Pico Caroni from Friedrich Miescher Institut in Basel, Switzerland. "In our study, we introduced a with a specific deficit in the assembly of synapses under conditions of enhanced plasticity in the adult and exploited the model to investigate a role for enhanced synaptogenesis in learning and memory associated with environmental enrichment."

Specifically, Dr. Caroni and coauthor Dr. Ewa Bednarek studied synapse remodeling and learning upon enrichment in the presence and absence of a protein called β-Adducin which has been implicated in the regulation of plasticity and learning. Mice lacking β-Adducin failed to assemble new synapses upon enhanced plasticity and exhibited diminished memory after environmental enrichment. Both mice lacking β-Adducin and control mice exhibited anatomical changes that could support new synapses (growth of new spine structures) upon enrichment, but these failed to establish synapses in the absence of β-Adducin. This suggests that in the adult, separate signals regulate anatomical changes and the actual formation of synapses. Remarkably, both the disassembly of pre-existing synapses and the assembly of new synapses were necessary to enhance learning and memory upon environmental enrichment.

Taken together, the findings provide new insight into the mechanisms that underlie enhanced long-term memory after . "We have shown that circuit remodeling and synaptogenesis processes in the adult have important roles in and memory, and that β-Adducin is critically important to establish new under conditions of enhanced plasticity," concludes Dr. Caroni. "Future studies will aim at elucidating how experience enhances synapse turnover and synaptogenesis, how this potentiates memory processes, and how impairment of these processes may produce memory loss in disease."

Explore further: Neymar's brain on auto-pilot - Japan neurologists

add to favorites email to friend print save as pdf

Related Stories

Fewer synapses equal more efficient learning

Dec 09, 2010

(PhysOrg.com) -- Neurons exchange information via special connections, the synapses. New synapses are constantly being formed, existing synapses are reinforced and redundant synapses are eliminated. Scientists ...

Scientists find molecular glue needed to wire the brain

Dec 08, 2010

(PhysOrg.com) -- Yale University researchers have found that a single molecule not only connects brain cells but also changes how we learn. The findings, reported in the December 9 issue of the journal Neuron, may he ...

Hairstyle of a Neuron: From Hairy to Mushroom-Head

Mar 07, 2007

Synapses are essential for the brain's normal function: their absence or presence is tightly linked to the brain's ability to transfer, process, and store information. Synapses are thus constantly generated ...

Scientists capture the first image of memories being made

Jun 18, 2009

The ability to learn and to establish new memories is essential to our daily existence and identity; enabling us to navigate through the world. A new study by researchers at the Montreal Neurological Institute ...

Recommended for you

Neymar's brain on auto-pilot - Japan neurologists

3 hours ago

Brazilian superstar Neymar's brain activity while dancing past opponents is less than 10 percent the level of amateur players, suggesting he plays as if on auto-pilot, according to Japanese neurologists.

Brain's dynamic duel underlies win-win choices

15 hours ago

People choosing between two or more equally positive outcomes experience paradoxical feelings of pleasure and anxiety, feelings associated with activity in different regions of the brain, according to research ...

ALS disease is rare, 1st US count finds

16 hours ago

(AP)—The U.S. government has issued its first national estimate for amyotrophic lateral sclerosis, or ALS, confirming the devastating disease is rare.

User comments : 0