Why some children are harmed by mother's alcohol, but others aren't

Mar 23, 2011

Exposure to alcohol in the womb doesn't affect all fetuses equally. Why does one woman who drinks alcohol during pregnancy give birth to a child with physical, behavioral or learning problems -- known as fetal alcohol spectrum disorder -- while another woman who also drinks has a child without these problems?

One answer is a passed on by the mother to her son, according to new Northwestern Medicine research. This gene variation contributes to a fetus' vulnerability to even moderate alcohol exposure by upsetting the balance of thyroid hormones in the brain.

The Northwestern Medicine study with rats is the first to identify a direct of behavioral deficits caused by fetal alcohol exposure. The study is published today in the .

"The findings open up the possibility of using that have the potential to reverse or fix the dosage of the thyroid hormones in the brain to correct the problems caused by the alcohol exposure," said Eva E. Redei, senior author of the study and the David Lawrence Stein Professor of Psychiatry at Northwestern University Feinberg School of Medicine.

"In the not-too-distant future we could identify a woman's vulnerability to alcohol if she is pregnant and target this enzyme imbalance with drugs, a supplement or another method that will increase the production of this enzyme in the hippocampus, which is where it's needed," Redei said.

Efforts to educate pregnant women about the risks of alcohol have not changed the percentage of children born with fetal alcohol spectrum disorder, Redei noted.

The gene involved, Dio3, makes the enzyme that controls how much active is in the brain. A delicate balance of the thyroid hormone is critically important in the development of the fetal brain and in the maintenance of adult . Too much of it is as bad as too little.

When males inherit this variation of the Dio3 gene from their mother, they don't make enough of this enzyme in their hippocampus to prevent an excess of thyroid hormones. The resulting overdose of the hormones makes the hippocampus vulnerable to damage by even a moderate amount of alcohol. The rat mothers in the study drank the human equivalent of two to three glasses of wine a day. Their male offspring showed deficits in social behavior and memory similar to humans whose mothers drank alcohol.

The alcohol causes the problem by almost completely silencing the father's copy of the Dio3 gene in animals whose mother has the gene variation. As a result, the offspring don't make enough of this enzyme, disrupting the delicate balance of the thyroid hormone levels. This is an example of an interaction between genetic variation in the DNA sequence, and epigenetics, which is when the environment, such as alcohol in utero, modifies the DNA.

"The identification of this novel mechanism will stimulate more research on other genes that also influence alcohol-related disorders, especially in females," said Laura Sittig, the lead author of the study and a graduate student in Redei's lab.

In the study, the rats' social behavior was measured by putting a pup into a cage with an adult. Normal adult behavior is to lick and smell the pup. The adults exposed to alcohol in utero, however, interacted with the pup half as much as normal. They also forgot where to navigate in a maze that evaluated spatial memory.

"These results show they had social and memory deficits," Redei said. "This indicates the damage to the from the ."

Explore further: Better living through mitochondrial derived vesicles

add to favorites email to friend print save as pdf

Related Stories

Fetal alcohol study uncovers new facts

Jan 23, 2007

U.S. medical researchers have found cholesterol supplementation prevents fetal alcohol spectrum defects in alcohol-exposed zebra fish embryos.

Recommended for you

Better living through mitochondrial derived vesicles

17 hours ago

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

18 hours ago

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

Engineering new bone growth

21 hours ago

MIT chemical engineers have devised a new implantable tissue scaffold coated with bone growth factors that are released slowly over a few weeks. When applied to bone injuries or defects, this coated scaffold ...

User comments : 0