Breakthrough in Niemann-Pick Type C research reported

Mar 21, 2011

A paper announcing a breakthrough discovery in the fight against Niemann-Pick Type C, coauthored by Olaf Wiest and Paul Helquist of the University of Notre Dame's Department Chemistry & Biochemistry and Frederick Maxfield, Chair of Biochemistry at Cornell University Weill College of Medicine, appears in the Proceedings of the National Academy of Sciences this week. The paper shows how use of a histone deacetylase inhibitor correct the damage done by the genetic disorder and allowed once-diseased cells to function normally.

Niemann-PickType C (NPC) involves a genetic flaw that keeps from using lipids appropriately and leaves the lipids trapped in the cell. Brain cells are especially impacted, and destruction of brain cells typically kills victims by their teen years and there is currently no treatment available in the U.S. NPC is an inherited cholesterol metabolism disorder that strikes one in every 150,000 children. It has been referred to by the National Institutes of Health as "childhood Alzheimer's" because of similarities in the brains of NPC and Alzheimer's disease patients.

Three of the four grandchildren of former Notre Dame head football coach Ara Parseghian died of NPC, and the University has been involved in research on the disorder for years. Last year, it formally united with the Parseghian Foundation, which sponsored this work.

Last summer, Notre Dame College of Science Dean Gregory Crawford and his wife Renate bicycled 2,300 miles from Tucson to Notre Dame to raise awareness of the newly strengthened partnership with the Parseghian Foundation. Notre Dame's Center for Rare and Neglected Diseases works to develop therapies and outreach efforts for people suffering from conditions, like NPC, that have bee3n largely ignored by pharmaceutical companies.

A team of led by Wiest and Helquist at Notre Dame and Maxfield at Cornell, uncovered evidence that histone deacetylase inhibitors correct NPC's genetic flaw. Detailed images obtained at Cornell by Maxfield's group gave vivid evidence of the drug's effectiveness, showing how NPC cells became indistinguishable from normal human cells after treatment with the drug. The histine deacetylase inhibitors have a wide range of potential uses, from rare diseases, the focus at Notre Dame, to several forms of cancer, including leukemia, where they can increase the number of bone marrow cells.

Several of the compounds studied are shown to be safe in advanced clinical studies of cancer and one compound is currently approved by the FDA.

"Our biggest single emphasis the last few years has been Niemann-Pick among these rare diseases," Helquist said. "We developed several processes for the efficient preparation of these types of drugs. There's a stream of publications and also a stream of patents starting in June 2007 and continuing this year."

"If the results in human cells can be confirmed in clinical trials, the fact that the histone deacetylase inhibitors are already in advanced clinical trials or even approved drugs could greatly accelerate the development of a treatment for this devastating disease."

Explore further: The impact of bacteria in our guts

Related Stories

Future therapies for stroke may block cell death

Jun 14, 2007

A new therapy to re-activate silenced genes in patients who suffer from neurodegenerative diseases or stroke is being developed by researchers at the University of Illinois at Chicago and Cornell University.

Lipid involved with gene regulation uncovered

Sep 04, 2009

Virginia Commonwealth University School of Medicine researchers have discovered a new role for the bioactive lipid messenger, sphingosine-1-phosphate, or S1P, that is abundant in our blood - a finding that could lead to a ...

Argonne, Notre Dame begin new nuclear theory initiative

Oct 05, 2005

Physicists at the U.S. Department of Energy's Argonne National Laboratory and the University of Notre Dame have begun a new collaborative project to explore and explain the physics of rare nuclear isotopes.

Lipid involved with gene regulation uncovered

Sep 08, 2009

(PhysOrg.com) -- Virginia Commonwealth University School of Medicine researchers have discovered a new role for the bioactive lipid messenger, sphingosine-1-phosphate, or S1P, that is abundant in our blood - a finding that ...

Recommended for you

The impact of bacteria in our guts

17 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

18 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

19 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 0