Destined for disease: Breast cancer mutation regulates cell fate

February 3, 2011

A new study sheds light on why individuals who inherit a particular family of mutations have a high risk of developing a very aggressive form of breast cancer. The research, published by Cell Press on February 4th in the journal Cell Stem Cell, shows that breast tissue cells from these individuals make abnormal cell-fate decisions even before cancer develops and provides exciting new insights into the mechanisms behind one of the most lethal types of breast cancer.

There are many forms of human . Mutations in the BRCA1 are associated with the development of the "basal-like" subtype of breast cancer which exhibits a very poor prognosis. "Recent evidence has indicated that BRCA1 might regulate breast ," explains senior study author Dr. Charlotte Kuperwasser, Associate Professor in anatomy and cellular biology from Tufts University School of Medicine and member of the Sackler School of Graduate Biomedical Sciences at Tufts. "We wanted to examine whether BRCA1's role in differentiation was associated with the increased development of basal-like breast cancer."

Dr. Kuperwasser's group examined disease-free breast tissues from patients with normal or mutant BRCA1 genes. Using an ingenious strategy that allowed them to mimic the environment of intact human , they transplanted the human cells into mice and looked at the types of tumors that formed after the cells were exposed to additional cancer-promoting signals. Although the cells with normal BRCA1 grew into different kinds of breast cancer, the cells from women with BRCA1 mutations mostly formed the aggressive basal-like tumors. Importantly, molecular analysis of disease-free breast cells with mutated BRCA1 revealed that even before tumors developed, the were more likely to remain immature and contain elevated levels of a protein called Slug. The researchers showed that when Slug is present in the breast, cells are unable to undergo proper maturation and are stalled in a premature state of development. This premature state of development is subsequently retained in basal-like breast cancers.

These findings show that BRCA1 mutations significantly impact breast cell maturation even before the patients manifest an increased risk for breast cancer. In a sense, the BRCA1 mutation "stacks the deck" towards a basal-like tumor phenotype by biasing differentiation towards this state. "Future studies will be necessary to fully dissect the precise domains and mechanisms by which BRCA1 regulates breast epithelial differentiation," concludes Dr. Kuperwasser. "In addition, further experiments will be needed to determine whether certain mutations in BRCA1 affect differentiation and regulate cell fate differently and whether different mutations alter the propensity for the development of basal-like tumors."

Explore further: Enhanced DNA-repair mechanism can cause breast cancer

Related Stories

Enhanced DNA-repair mechanism can cause breast cancer

October 15, 2007

Although defects in the "breast cancer gene," BRCA1, have been known for years to increase the risk for breast cancer, exactly how it can lead to tumor growth has remained a mystery. In the October 15, 2007, issue of the ...

BRCA1 mutation linked to breast cancer stem cells

January 31, 2008

A new study may explain why women with a mutation in the BRCA1 gene face up to an 85 percent lifetime risk of breast cancer. Researchers from the University of Michigan Comprehensive Cancer Center found that BRCA1 plays a ...

Stem cell 'daughters' lead to breast cancer

August 2, 2009

Walter and Eliza Hall Institute scientists have found that a population of breast cells called luminal progenitor cells are likely to be responsible for breast cancers that develop in women carrying mutations in the gene ...

New risk factor for developing breast cancer

November 10, 2010

An Australian research team from the Peter MacCallum Cancer Centre, the University of Melbourne and the University of Queensland has identified a new risk factor for developing breast cancer. This has been published online ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.