Cross-species strategy might be a powerful tool for studying human disease

Feb 03, 2011

A new study takes advantage of genetic similarities between mammals and fruit flies by coupling a complex genetic screening technique in humans with functional validation of the results in flies. The new strategy, published by Cell Press on February 3rd in The American Journal of Human Genetics, has the potential to be an effective approach for unraveling genetically complex human disorders and providing valuable insights into human disease.

Genome-wide association studies (GWASs) involve sifting through the complete set of DNA from many individuals to identify genetic variations associated with a particular disease. Although this technique has proven to be a powerful tool for developing a better understanding of diseases, such as Alzheimer's disease (AD), that involve multiple genetic variations, there are substantial limitations. Perhaps most significantly, follow-up studies aimed at validating disease-associated genetic variations in humans require large sample sizes and a great deal of effort. The current study validates GWAS results by using an inventive alternative approach.

"Simple genetic models of human disease, such as in the fruit fly, have been important experimental tools for many years, particularly for large-scale functional testing of genes," explains a senior study author, Mel B. Feany, MD, PhD, from Brigham and Women's Hospital.. "We therefore hypothesized that the fly disease model might fulfill the growing need for efficient strategies for validation of association signals identified by GWAS."

Dr. Joshua M. Shulman and colleagues implemented a two-stage strategy to enhance a GWAS of AD neuropathology by integrating the results of gene discovery in humans with functional screening in a fly model system relevant to AD biology. Specifically, the researchers evaluated 19 genes from 15 distinct genomic regions identified in a human GWAS designed to identify genes that influence AD pathology. In six out of these 15 genomic regions, a causal gene was subsequently identified in the fly disease model on the basis of interactions with the neurotoxicity of Tau protein, a well-known constituent of AD pathology.

The authors also discuss the potential for application of their technique to studies examining other human diseases. "Evidence is emerging in support of a polygenic model of inheritance for complex genetic disorders, particularly neuropsychiatric diseases, in which hundreds or even thousands of common gene variants collectively contribute to disease risk," says co-author Philip L. De Jager, MD, PhD, also of Brigham and Women's Hospital. "Our strategy of coupling human GWAS with functional in a model organism will likely be a powerful strategy for follow-up of such signals in the future in order to prioritize genes and pathways for further investigation."

Explore further: Mysterious esophagus disease is autoimmune after all

add to favorites email to friend print save as pdf

Related Stories

Refined tools help pinpoint disease-causing genes

Apr 29, 2010

In findings that may speed the search for disease-causing genes, a new study challenges the prevailing view that common diseases are usually caused by common gene variants (mutations). Instead, say genetics researchers, the ...

Recommended for you

Mysterious esophagus disease is autoimmune after all

10 hours ago

(Medical Xpress)—Achalasia is a rare disease – it affects 1 in 100,000 people – characterized by a loss of nerve cells in the esophageal wall. While its cause remains unknown, a new study by a team of researchers at ...

Diagnostic criteria for Christianson Syndrome

Jul 21, 2014

Because the severe autism-like condition Christianson Syndrome was only first reported in 1999 and some symptoms take more than a decade to appear, families and doctors urgently need fundamental information ...

New technique maps life's effects on our DNA

Jul 20, 2014

Researchers at the BBSRC-funded Babraham Institute, in collaboration with the Wellcome Trust Sanger Institute Single Cell Genomics Centre, have developed a powerful new single-cell technique to help investigate how the environment ...

User comments : 0