Neutron scattering study yields new insights into virus life cycle

Jan 24, 2011 by Morgan McCorkle
The mosquito-borne Sindbis virus is a member of the same family that causes West Nile fever and dengue fever. [Image credit: Paredes et al., Virology. 324, 373 (2004)]

(PhysOrg.com) -- Without a host, a virus is a dormant package of proteins, genetic material and occasional lipids. Once inside a living cell, however, a virus can latch onto cell parts and spring into action - mutating, replicating and spreading into new cells.

"There's this thought that a virus has one structure, whether it's in a mosquito or in a human cell," said Oak Ridge National Laboratory researcher Flora Meilleur. "But a mosquito cell and a human cell are very different, which means that a virus may have to reorganize itself."

Meilleur is part of a research team from ORNL and North Carolina State University that is studying how viruses change their structure when they move between different host species. Understanding how a virus reorganizes itself when it goes from a mosquito to a human is critical for the development of medicines that can block the spread of viruses.

The team's most recent study, published in the , focuses on the Sindbis virus, a member of the arbovirus family that causes like , dengue fever and West Nile fever.

Scientists have previously observed host-specific differences in the Sindbis virus, but Meilleur says the team's study is the first time that subtle structural variations in Sindbis have been observed and characterized.

"This is the first structural comparison of Sindbis viruses grown in different host cells," Meilleur said.

The team, which included Meilleur, Lilin He, Dean Myles and William Heller from ORNL and Amanda Piper, Raquel Hernandez and Dennis Brown from NCSU, used a technique called small angle to compare from mammalian and insect cells. Their results revealed that the mammalian-grown viruses exhibited distinct features, including a larger diameter, increased levels of cholesterol and a different distribution of in the virus core.

"These results suggest that structural changes are likely to be important in transmission between hosts," Meilleur said. "The chemical environment of the appears to affect how the virus assembles itself."

The team's structural studies were performed at ORNL's High Flux Isotope Reactor at the facility's Bio-SANS instrument, which uses chilled neutrons to analyze the structure, function and dynamics of complex biological systems. Whereas techniques like X-ray scattering can cause radiation damage in biological samples during analysis, neutron scattering is nondestructive, says Meilleur. "Neutron scattering allows you to see differences in the composition of the without destroying the sample," Meilleur said.

The ability of neutrons to "see" the composition of biological materials is linked to the particles' sensitivity to hydrogen, which is a key component in compounds like proteins and cell membranes.

Explore further: Key milestone for brown fat research with a ground-breaking MRI scan

add to favorites email to friend print save as pdf

Related Stories

New West Nile and Japanese encephalitis vaccines produced

May 30, 2008

University of Texas Medical Branch at Galveston researchers have developed new vaccines to protect against West Nile and Japanese encephalitis viruses. The investigators created the vaccines using an innovative technique ...

Structure of salt lake archaeal virus solved in Finland

May 27, 2008

Researchers at the Finnish Centre of Excellence in Virus Research at University of Helsinki’s Institute of Biotechnology have solved the structure of archaeal virus SH1 to the resolution of one nanometer. The results that ...

Visualizing virus replication in three dimensions

May 07, 2009

Dengue fever is the most common infectious disease transmitted by mosquitoes - some 100 million people around the world are infected. Researchers at the Hygiene Institute at Heidelberg University Hospital ...

New findings detail how virus prepares to infect cells

Dec 01, 2010

(PhysOrg.com) -- Researchers have learned the atomic-scale arrangement of proteins in a structure that enables a virus to invade and fuse with host cells, showing precisely how the structure morphs with changing ...

Recommended for you

Gate for bacterial toxins found

9 hours ago

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...

User comments : 0

More news stories

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Simplicity is key to co-operative robots

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...