University of Hawaii at Manoa research focuses on congenital abnormality

Dec 09, 2010
This shows the transformation of the seventh cervical vertebra into a thoracic vertebra. Credit: Jinzeng Yang

Researchers at the University of Hawai'i at Manoa have developed innovative techniques that could have profound effects on congenital cervical vertebrae malformation research.

In the cover-featured research article of the November issue of Molecular Reproduction and Development, researchers looked into congenital cervical vertebrae malformation in humans that can cause neural problems and increase susceptibility to stillbirth in women. Research advancement on abnormal vertebrae development has been limited due to the lack of lab animals with taxonomic equivalency to humans (animal models), and restrictions on human subject research.

Leading the research effort was Dr. Jinzeng Yang, a molecular biologist in the College of and Human Resources' Department of Human Nutrition, Food and Animal Sciences. Researchers from Yang's laboratory have developed a new mouse model that reveals how patterning and developmental proteins can influence cervical vertebrae formation.

The uses a gene suppression technique that induces skeletal formation. The mice and their offspring appear normal but have striking cervical vertebrae formation. Yang's new gene suppression technique offers benefits, in this case, over the generated by complete gene removal (knockout mice), which cause mice to die shortly after birth.

Yang's laboratory has been studying myostatin, a protein playing a dominant role in reducing muscle mass. By genetically blocking the function of myostatin by its partial , mice were developed with 40 percent more muscle mass. Yang's graduate student Zicong Li, the first author of the publication, hypothesized that this gene suppression strategy would also work to stimulate skeletal development by inhibiting growth differentiation factor 11 (GDF11), a similar protein to myostatin, and produce live animals. Previously, the mice with complete removal of the GDF11 gene or knockout mice died shortly after birth. In collaboration with Dr. Stefan Moisyadi's laboratory in the UH Institute of Biogenesis Research, they generated the transgenic mice by using a new single plasmid system of piggyBac transgene delivery, which offers greater transposition rates and precision.

Explore further: New compounds protect nervous system from the structural damage of MS

More information: The original research article is titled, "Transgenic Over-Expression of Growth Differentiation Factor 11 Propeptide in Skeleton Results in Transformation of the Seventh Cervical Vertebra into a Thoracic Vertebra." The publication is available online at onlinelibrary.wiley.com/doi/10.1002/mrd.21252/full.

Provided by University of Hawaii at Manoa

not rated yet
add to favorites email to friend print save as pdf

Related Stories

'Mighty mice' made mightier

Aug 29, 2007

The Johns Hopkins scientist who first showed that the absence of the protein myostatin leads to oversized muscles in mice and men has now found a second protein, follistatin, whose overproduction in mice lacking ...

Researchers develop mouse model for muscle disease

Sep 05, 2006

Researchers from the University of Minnesota have identified the importance of a gene critical to normal muscle function, resulting in a new mouse model for a poorly understood muscle disease in humans.

New insights into limb formation

Aug 12, 2009

Investigators at Burnham Institute for Medical Research (Burnham) and the University of Connecticut Health Center (U.C.H.C.) have gained new understanding of the role hyaluronic acid (HA) plays in skeletal growth, chondrocyte ...

Recommended for you

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.