How past experiences inform future choices

Dec 22, 2010 by Deborah Halber

Researchers at MIT's Picower Institute for Learning and Memory report for the first time how animals' knowledge obtained through past experiences can subconsciously influence their behavior in new situations.

The work, which sheds light on how our past experiences inform our future choices, will be reported on Dec. 22 in an advance online publication of Nature.

Previous work has shown that when a mouse explores a new space, in its , the center of and , fire sequentially like gunpowder igniting a makeshift fuse. Individual neurons called place cells fire in a specific pattern that mirrors the animal's movement through space. By looking at the time-specific patterns and sequences recorded from the firing cells, researchers can tell which part of the maze the animal was running at the time.

In the current work, research scientist George Dragoi and Susumu Tonegawa, Picower Professor of Biology and and director of the RIKEN-MIT Center for Neural Circuit Genetics, found that some of the sequences of place cells in mice' brains that fired during a novel spatial experience such as running a new maze had already occurred while the animals rested before the experience.

"These findings explain at the neuronal circuit level the phenomenon through which prior knowledge influences our decisions when we encounter a new situation," Dragoi said. "This explains in part why different individuals form different representations and respond differently when faced with the same situation."

When a mouse pauses and rests while running a maze, it mentally replays its experience. Its neurons fire in the same pattern of activity that occurred while it was running. Unlike this version of mental replay, the phenomenon found by the MIT researchers is called preplay. It occurred before the animal even started the new maze.

"These results suggest that internal neuronal dynamics during resting organize cells within the hippocampus into time-based sequences that help encode a related experience occurring in the future," Tonegawa said.

"Previous work largely ignored internal neuronal activities representing prior knowledge that occurred before a new event, space or situation. Our work shows that an individual's access to prior knowledge can help predict a response to a new but similar experience," he said.

Explore further: New viral tools for mapping brains

More information: "Preplay of future place cell sequences by hippocampal cellular assemblies," by George Dragoi and Susumu Tonegawa. Nature, 22 December, 2010.

Related Stories

Sleep helps build long-term memories

Jun 24, 2009

(PhysOrg.com) -- Experts have long suspected that part of the process of turning fleeting short-term memories into lasting long-term memories occurs during sleep. Now, researchers at the RIKEN-MIT Center for ...

Rats' mental 'instant replay' drives next moves

Aug 26, 2009

(PhysOrg.com) -- Researchers at MIT’s Picower Institute for Learning and Memory have found that rats use a mental instant replay of their actions to help them decide what to do next, shedding new light on ...

Discovery gives insight into brain 'replay' process

Mar 11, 2010

The hippocampus, a part of the brain essential for memory, has long been known to "replay" recently experienced events. Previously, replay was believed to be a simple process of reviewing recent experiences in order to help ...

Picower research finds unexpected activity in visual cortex

Mar 16, 2006

For years, neural activity in the brain's visual cortex was thought to have only one job: to create visual perceptions. A new study by researchers at MIT's Picower Institute for Learning and Memory shows that visual cortical ...

Recommended for you

New viral tools for mapping brains

10 hours ago

(Medical Xpress)—A brain-computer-interphase that is optogenetically-enabled is one of the most fantastic technologies we might envision today. It is likely that its full power could only be realized under ...

Link seen between seizures and migraines in the brain

Oct 30, 2014

Seizures and migraines have always been considered separate physiological events in the brain, but now a team of engineers and neuroscientists looking at the brain from a physics viewpoint discovered a link ...

Neuroscience: Why scratching makes you itch more

Oct 30, 2014

Turns out your mom was right: Scratching an itch only makes it worse. New research from scientists at Washington University School of Medicine in St. Louis indicates that scratching causes the brain to release ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.