Attempting to predict epileptic seizure

Dec 14, 2010

While the causes of epileptic seizures continue to confound brain researchers, scientists have been exploring how changes in the coordinated activity of brain networks, as monitored through electrodes, might help predict impending seizures. A report in the American Institute of Physics' journal Chaos offers new insight into this possibility.

Two properties are commonly used to measure fluctuations in the activity of a brain network; one, known as L, relates to the overall connectedness between the activities of (or nodes), and the other, C, represents the probability that any two nodes are both interacting with a third node. Tracking changes in these variables, neuroscientists suspect, might offer a way to spot seizures in advance.

Most studies of complex brain networks have used only short-duration recordings of , no more than a few minutes long. And, says physicist Marie-Therese Kuhnert -- a graduate student at the University of Bonn and first author of the CHAOS paper -- to really find seizure-predicting patterns, you need longer-term data.

Kuhnert and her colleagues, professors Christian Elger and Klaus Lehnertz, studied the brain recordings of 13 epilepsy patients undergoing pre-surgical evaluations. The data -- representing, in all cases, days of continuous recordings and seizure activity -- did indeed show fluctuations in L and C, but the two measures were "strongly influenced by the daily rhythms of the patient, sleep–wake cycles, and alterations of anticonvulsive medication," Kuhnert says. Upcoming seizures and even seizures themselves had little effect.

Surprisingly, Kuhnert and her colleagues found much more regularization of brain network activity at night. Previously, such regularization has been seen in healthy individuals, but never in epilepsy patients. "It remains to be investigated whether the increased regularization at night is causally related to , whether it requires some treatment, or whether it can be regarded as a seizure-preventing mechanism," she says.

Explore further: Growing a blood vessel in a week

More information: The article "Long-term variability of global statistical properties of epileptic brain networks" by Marie-Therese Kuhnert, Christian E. Elger, and Klaus Lehnertz appears in the journal Chaos. See: link.aip.org/link/chaoeh/v20/i4/p043126/s1

Provided by American Institute of Physics

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Epilepsy Patients Are Given New Hope With Brain Implant

Dec 09, 2009

(PhysOrg.com) -- A startup company, Neuropace in Mountain View Ca., has developed a device that offers new hope for epilepsy patients. The device is designed to neutralize the abnormal electrical activity ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0