Protein with cardioprotective capabilities during heart attack discovered

November 16, 2010

University of Cincinnati (UC) researchers have discovered a new protein that could be cardioprotective during heart attack, potentially leading to more targeted treatments for patients at risk.

These findings are being presented at the American Heart Association's (AHA) Scientific Sessions in Chicago Nov. 16.

Researchers in the department of pharmacology and cell biophysics, led by Chi Keung Lam, a PhD student, and Wen Zhao, PhD, under the direction of Litsa Kranias, PhD, AHA distinguished scientist and chair of the department, found that HAX-1, an anti-cell death protein, plays an important role in protecting and muscle during ischemia-reperfusion injury, or damage to tissue caused by blood restriction.

"Multiple cell death pathways are activated during heart attack, resulting in cell death and reduced ," Lam says. "HAX-1 has been reported to have involvement in different cell death mechanisms.

"We found that HAX-1 protein levels were reduced in hearts after ischemia-reperfusion injury."

In this study, researchers created animal models with cardiac-specific, over-produced HAX-1 by twofold and then experimentally induced heart attack.

"The hearts of these animal models showed improved contractile performance after heart attack-related injury and decreased cell death," Zhao says. "The protective effect was associated with decreased activities of caspases three and nine. Caspases are a family of proteins that are one of the main executors of the process."

Zhao also found that mitochondria isolated from HAX-1 in the hearts of these models were resistant to swelling and to permeability transition (MPT), or decrease in the permeability of the mitochondrial membranes by calcium.

Lam adds that hearts of these models also had reduced in the (ER), or the interconnected network within cells that synthesizes proteins, following injury.

"These findings suggest the unique cardioprotective potential of HAX-1 in ischemia-reperfusion injury," Zhao says. "The findings could lead to targeted treatments at the cellular level for patients who are at risk for and prevent cell and tissue death from ever occurring."

Explore further: Severe heart attack damage limited by hydrogen sulfide

Related Stories

Severe heart attack damage limited by hydrogen sulfide

September 19, 2007

Administering hydrogen sulfide (H2S) directly into the heart during a simulated heart attack significantly reduces the tissue and cell damage often seen in oxygen-starved organs, according to a new study from researchers ...

Mitochondria send death signal to cardiac cells, study shows

November 8, 2007

Scientists have determined how cardiac cells die just as emergency treatments restore blood flow to a heart in distress, a paradox that has long puzzled doctors who are able to relieve pain in patients suffering from blocked ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Cow embryos reveal new type of chromosome chimera

May 27, 2016

I've often wondered what happens between the time an egg is fertilized and the time the ball of cells that it becomes nestles into the uterine lining. It's a period that we know very little about, a black box of developmental ...

Shaving time to test antidotes for nerve agents

February 29, 2016

Imagine you wanted to know how much energy it took to bike up a mountain, but couldn't finish the ride to the peak yourself. So, to get the total energy required, you and a team of friends strap energy meters to your bikes ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.