Light fantastic: Retinal implant brightens future for blind

Nov 03, 2010

German doctors on Wednesday announced a breakthrough in retinal implants, the fledgling technology that aims to restore sight in people cursed by a form of inherited blindness.

Three patients fitted with the new device were able to see shapes and objects, and one was able to walk around a room by himself, approach people, read a clock face and distinguish between seven shades of grey.

The device "represents an unprecedented advance in electronic visual prostheses," the Royal Society, Britain's de-facto academy of sciences, said as one of its journals published the research.

"(It) could eventually revolutionise the lives of up to 200,000 people worldwide who suffer from blindness as a result of ."

Retinitis pigmentosa is a degenerative disease in which light receptors in the retina, on the back of the eyeball, gradually cease to function.

Over the past seven years, surgeons have pioneered electronic implants that are attached to the retina and are linked by wire to a small external camera that is mounted to a pair of spectacles.

The camera picks up light and and sends the image in the form of an electrical signal, via a processor unit, to the implant.

The implant then feeds the data to the optic nerve which leads from the eyeball to the brain.

The new device takes a step forward by capturing light that travels naturally through the eye's lens.

Correctly known as a sub-retinal implant, it entails a microchip comprising some 1,500 that are attached underneath the retina, thus replacing some of the lost receptors.

What the brain receives through the optic nerve is a tiny image comprising 38 pixels by 40 pixels -- points of light that are each brighter or dimmer according to the light that falls on the chip.

"Three previously blind persons could locate bright objects on a dark table, two of whom could discern grating patterns," according to the paper, published in the journal .

"One of these patients was able to correctly describe and name objects like a fork or knife on a table, geometric patterns, different fruits and discern dshades of grey with only 15 percent contrast.

"Without a training period, the regained visual functions enabled him to localise and approch persons in a room freely and to read large letters as complete words after several years of blindness."

The implant was developed by a German company, AG, alongside the Institute for Ophthalmic Research at the University of Tuebingen.

Lead researcher Eberhart Zrenner, a Tuebingen professor who co-founded Retinal Implant in 1996, said the pilot study was "proof-of-concept," meaning that it showed how visual functions could be restored to help blind people in everyday life.

Explore further: Scientists identify critical new protein complex involved in learning and memory

add to favorites email to friend print save as pdf

Related Stories

Retina implants: location is key

Mar 24, 2010

(PhysOrg.com) -- The first UK trial of a promising new retinal implant technique is to be led by Oxford University researchers.

Stimulating sight: New retinal implant developed

Sep 23, 2009

(PhysOrg.com) -- Inspired by the success of cochlear implants that can restore hearing to some deaf people, researchers at MIT are working on a retinal implant that could one day help blind people regain a ...

Australia reveals prototype 'bionic' eye

Mar 30, 2010

Bionic Vision Australia (BVA) today unveils their wide-view neurostimulator concept - a bionic eye that will be implanted into Australia's first recipient of the technology.

Technology to Treat Blindness Earns Award

Jul 23, 2009

Research performed at Caltech as part of a collaborative U.S. Department of Energy-funded artificial-retina project designed to restore sight to the blind has received one of R&D Magazine's 2009 R&D 100 Awards. ...

Recommended for you

LED exposure is not harmful to human dermal fibroblasts

2 hours ago

There was a time when no one thought about light bulbs—one blew, you screwed another one in. Nowadays, it's more complicated, as energy efficiency concerns have given rise to a slew of options, including ...

Virtual bacteria shed light on cystic fibrosis infections

3 hours ago

The two species of bacteria are genetically similar – both contagious, both drug-resistant, both preying upon people with cystic fibrosis or weakened immune systems – yet they go about their sinister work very differently. ...

How the body fights against viruses

22 hours ago

Scientists of the Max F. Perutz Laboratories of the University of Vienna and the Medical University of Vienna, together with colleagues of the ETH Zurich, have now shown how double stranded RNA, such as viral ...

User comments : 7

Adjust slider to filter visible comments by rank

Display comments: newest first

LivaN
5 / 5 (1) Nov 03, 2010
This is truely amazing!
cosmicham
not rated yet Nov 03, 2010
Very cool!

I wonder how quickly this could be scaled up to much higher resolutions.
trantor
not rated yet Nov 03, 2010
this is NOT a novelty. As they said themselves, the only difference is that this one is all inside the eye, while the others, used an external camera and transfered the external camera image to the optical nerves.
trekgeek1
not rated yet Nov 03, 2010
Very cool!

I wonder how quickly this could be scaled up to much higher resolutions.


If everything in our world is any indication, it will scale up very quickly:)
jsa09
not rated yet Nov 04, 2010
I would rather have my lens on the gasses until they improved the image quality enough to risk having someone pock around inside my eye.
visual
5 / 5 (1) Nov 04, 2010
Cochlear implants have been around for a very long time - FDA approved in 1984 for example. And while there has been much progress in the size of the devices, processing quality, link between the internal and external components, entirely internal prototypes and so on, the fundamentals have seen virtually no improvement.
Today they are still using the same absurdly low resolution of just 24 electrodes (or even 16 for one manufacturer). There are projects for "hi-def" versions, but even their 50 electrodes are disappointing.
The amount of people with implants seem also very low to me (subjective opinion) at under 200 000 in the whole world, considering the large period they've been available - but I guess that's expected when their quality is known to be so inadequate.
That doesn't leave me with much optimism for the speed of progress of visual implants.

We will need a breakthrough in nerve cell stimulation, such as using light instead of electricity, which is being researched too.
visual
5 / 5 (1) Nov 04, 2010
I honestly am anxious for the time when brain-computer interface implants get so advanced, safe and common that even healthy people will be getting cochlear implants as "built-in" equivalent of blue-tooth headsets today, in order to be able to conveniently listen to music or a phone. Likewise for retinal implants instead of computer displays, and possibly for all the other senses too.

More news stories

High-calorie and low-nutrient foods in kids' TV

Fruits and vegetables are often displayed in the popular Swedish children's TV show Bolibompa, but there are also plenty of high-sugar foods. A new study from the University of Gothenburg explores how food is portrayed in ...

Male-biased tweeting

Today women take an active part in public life. Without a doubt, they also converse with other women. In fact, they even talk to each other about other things besides men. As banal as it sounds, this is far ...