Finding our color center

Nov 01, 2010
Strictly Ballroom's color and movement made it perfect for this study.

The colorful Australian film Strictly Ballroom has been used in a breakthrough scientific experiment to locate the colour processing center in the human brain.

The unconventional method helped researchers at The Vision Centre to find regions of the brain that respond particularly strongly to color.

Their work could in future help in the treatment of patients who have become color blind due to brain injuries or a stroke.

"In non-human primates there's a proposed 'color processing centre' called V4. But those who've asked 'where is V4 in the human brain?' have come up with different results," says Erin Goddard, a researcher in the ARC Centre of Excellence for Vision Science and the University of Sydney.

"We decided to pick visual cues that are more natural, with lots of colours, movement and different types of objects, in preference to the usual equipment of colored dots and squares. That's why we chose Strictly Ballroom - because, as a movie, there's a lot going on visually that will engage the brain, and, in light of the subject matter, it has a lot of vivid colors."

The research method involved putting people in a functional and taking images of blood flow in their brains. During the scanning process, a short sequence of Strictly Ballroom was played, with the display switching back and forth between multi-color and black and white.

"The first sequence was arranged to have a multi-colour display for the first 15 seconds, followed by 15 seconds of black and white, switching a total of 17 times in the four and a half minute scan. We then replayed the same clip in a second scan, instead starting in black and white."

Erin says that this allowed the researchers to observe the brain's complex response to movement, edges, sizes, , colors and angles in the movie, using the MRI scanner. With the same clip played in different color sequences, they were able to 'subtract' the responses to the two different types of scan and so isolate those regions that responded particularly to color.

The location of the centralised colour processing region advances understanding to how the visual cortex is organised in our brain and opens the way for researchers to work on understanding cortical colour blindness.

Their discovery challenges the scientific theory that the V4 region is split across different parts of the human brain, as it is in monkeys.

Erin says that cortical color blindness differs from hereditary, or retinal, color blindness, the most common type of color blindness. Known as 'cerebral achromatopsia', it occurs when patients are unable to see colors following a or a stroke. The loss of color vision ranges from partial to complete color blindness, where the patient lives in a world of grey.

"People who are born color-blind do not have the normal three visual pigments in their cones - the vision cells that that provide us color vision - and that limits the information about color input to their brains," Erin explains.

"Patients with cortical can have a complete set of visual pigments in their cones, but the damage to their in the vicinity of V4 prevents their brains processing color. The colors are seen but not recognized."

Explore further: Growing a blood vessel in a week

Provided by University of Sydney

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Seeing color in 'blindsight'

Oct 27, 2008

By manipulating the brain noninvasively in a new way with magnetic stimulation, researchers have shown that they can restore some experience of color where before there was no visual awareness whatsoever. They report their ...

Color is in the eye of the beholder

Jul 03, 2007

In some regions of Central Europe, salad dressing is made preferably with pumpkin seed oil, which has a strong characteristic nutty flavor and striking color properties. Indeed, in a bottle it appears red, but it looks green ...

Probing Question: What is colorblindness?

Jan 31, 2008

Midnight Blue, Burnt Orange, Aquamarine. Since 1903, Crayola crayons -- with their fanciful names and hundreds of hues -- have introduced generations of American children to the nuanced beauty of the color spectrum. Imagine ...

Yes, we have no blue bananas

Oct 19, 2006

German scientists say color perception depends not only on an object's pigmentation but also on our knowledge of what the object should look like.

Study: Color plays role in perception

Apr 19, 2006

U.S. scientists have discovered a neural circuit they say is likely to play an important role in the visual perception of moving objects.

Recommended for you

Growing a blood vessel in a week

23 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0