Environmental risk assessment of pharmaceuticals inadequate

Oct 18, 2010

The strategies used to assess the environmental risks posed by pharmaceuticals are not enough to protect natural microbial communities, reveals a researcher from the University of Gothenburg (Sweden) who is calling for better environmental risk assessments.

"Above all, we need to include the combined effects of different drugs to reflect the situation in nature as it really is," says Sara Brosché from the Department of Plant and Environmental Sciences at the University of Gothenburg.

Modern medicine relies on pharmaceuticals for the treatment of practically everything, from headaches to cancer. The active substances in the drugs we take do not disappear into the body but are gradually secreted in urine and faeces. They then enter the sewerage system, and small amounts make it through the entire process.

Small quantities of pharmaceuticals are nowadays found in most aquatic environments, from groundwater to seawater. The highest concentrations are in the effluent from sewage treatment plants, often in the form of a cocktail of many different drugs. Once out in nature, these drug residues continue to affect living creatures. This applies particularly to antimicrobial agents such as antibiotics and antifungals, which are designed to kill microorganisms whether they are "bad" and cause infection, or "good" and serve important functions in nature.

"I saw effects on bacteria from the antibiotic chlortetracycline even at the concentrations shown in scientific publications to be present in the effluent from sewage treatment plants. Although chlortetracycline is no longer used in Sweden, many antibiotics from the same class are still in use."

In her research, Brosché has looked primarily at the combined effects of pharmaceuticals, as a cocktail of toxic substances will generally have a greater effect than the sum of its constituent parts. Her results show that although the levels of drugs normally seen in the environment are low, they are not without their risks.

"When five pharmaceuticals and personal care products (fluoxetine, propranolol, zinc pyritione, clotrimazole and triclosan) were mixed together at concentrations which did not have any significant effect individually, the mixture had an almost 30% effect on microalgae."

Brosché has also studied the high levels of antibiotics in effluents from production in India. When were exposed to this effluent, they rapidly developed increased tolerance to the antibiotic ciprofloxacin.

Explore further: Study finds that high fat diet changes gut microbe populations

Related Stories

Study: Drugs from sewage not dangerous

Jul 14, 2006

A Canadian study has suggested adverse effects are unlikely on aquatic life from drugs passed through human waste released from sewage treatment plants.

Study: Range of pharmaceuticals in fish across US

Mar 25, 2009

(AP) -- Fish caught near wastewater treatment plants serving five major U.S. cities had residues of pharmaceuticals in them, including medicines used to treat high cholesterol, allergies, high blood pressure, bipolar disorder ...

Antibiotics, antimicrobials and antifungals in waterways

Jun 09, 2009

Antibiotics, antimicrobials and antifungals are seeping into the waterways of North America, Europe and East Asia, according to an investigation published in the peer-reviewed journal Environmental Health Perspectives (EHP). ...

Recommended for you

Organ transplant rejection may not be permanent

8 hours ago

Rejection of transplanted organs in hosts that were previously tolerant may not be permanent, report scientists from the University of Chicago. Using a mouse model of cardiac transplantation, they found that immune tolerance ...

Researchers find key mechanism that causes neuropathic pain

10 hours ago

Scientists at the University of California, Davis, have identified a key mechanism in neuropathic pain. The discovery could eventually benefit millions of patients with chronic pain from trauma, diabetes, shingles, multiple ...

Deep sea light shines on drug delivery potential

10 hours ago

A naturally occurring bioluminescent protein found in deep sea shrimp—which helps the crustacean spit a glowing cloud at predators—has been touted as a game-changer in terms of monitoring the way drugs ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.