Study sheds light on how the brain shifts between sleep/awake states under anesthesia

Aug 26, 2010

Despite the fact that an estimated 25 million patients per year in the U.S. undergo surgeries using general anesthesia, scientists have only been able to hypothesize exactly how anesthetics interact with the central nervous system. They previously thought that the processes of "going under" and waking up from anesthesia affected the brain in the same way.

Now, researchers at the University of Pennsylvania School of Medicine have established in animal models that the brain comes in and out of a state of induced unconsciousness through different processes. The findings, published in PLoS One, may help researchers better understand serious sleep disorders and states of impaired consciousness such as comas.

"One major unanswered question in neuroscience is how the brain transitions between conscious and unconscious states," said senior author Max B. Kelz, MD, PhD, assistant professor of Anesthesiology and Critical Care. "Our results suggest that the brain keeps track of whether it is conscious or offline in an unconscious state. We are working to understand the mechanisms through which the brain accomplishes this feat. Studying general anesthetics in animal models offers a controllable means to investigate this newly recognized behavioral barrier that separates conscious from unconscious states."

Induction of anesthesia is commonly attributed to drug-induced modifications of neuronal function, whereas emergence from anesthesia has been thought to occur passively, with the elimination of the anesthetic from sites in the (CNS). If this were true, then CNS anesthetic concentrations on induction and emergence would be indistinguishable.

However, by generating anesthetic dose response data in both and mice, the researchers demonstrated that the forward and reverse paths through which anesthetic-induced unconsciousness arises and dissipates are not identical. Instead the animal subjects exhibited a delay in return to a state of consciousness despite the reduced concentration of the anesthetic.

The researchers observed that once a group of animal subjects underwent a transition from wakefulness to anesthetic-induced unconsciousness, the subjects exhibited resistance to the return of the wakeful state. Based on their findings, the authors propose a fundamental and biologically conserved state, which they call neural inertia, a tendency of the CNS to resist transitions between consciousness and unconsciousness.

"The findings from this study may provide insights into the regulation of sleep as well as states in which return of consciousness is pathologically impaired such as some types of coma," said Kelz. "This line of research may one day help us to develop novel drugs and targeted therapies for patients who have different forms of or who have the potential to awaken from coma but remain stuck in comatose states for months or years."

Explore further: REM sleep critical for young brain development; medication interferes

Related Stories

Anesthesia and Alzheimer's

Apr 25, 2008

In studies of human brain cells, the widely-used anesthetic desflurane does not contribute to increased production of amyloid-beta protein; however, when combined with low oxygen conditions, it can produce more of this Alzheimer’s ...

Recommended for you

Making waves with groundbreaking brain research

19 hours ago

New research by Jason Gallivan and Randy Flanagan suggests that when deciding which of several possible actions to perform, the human brain plans multiple actions simultaneously prior to selecting one of ...

Long-term memories are maintained by prion-like proteins

Jul 02, 2015

Research from Eric Kandel's lab at Columbia University Medical Center (CUMC) has uncovered further evidence of a system in the brain that persistently maintains memories for long periods of time. And paradoxically, ...

Water to understand the brain

Jul 02, 2015

To observe the brain in action, scientists and physicians use imaging techniques, among which functional magnetic resonance imaging (fMRI) is the best known. These techniques are not based on direct observations ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.