Reducing Alzheimer's-related protein in young brains improves learning in Down syndrome animal model

June 3, 2010

June 3, 2010 - Reducing a protein called beta-amyloid in young mice with a condition resembling Down syndrome improves their ability to learn, researchers at UT Southwestern Medical Center have found.

"This preliminary study in the animal model raises the intriguing possibility that drugs that lower beta-amyloid levels might offer some benefit to children with Down syndrome," said Dr. Craig Powell, assistant professor of neurology at UT Southwestern and co-lead author of the study, which is available in , the Public Library of Science's online journal.

Down syndrome, a genetic disease that causes learning disabilities and physical problems, is caused by an extra copy of chromosome 21. This chromosome includes the genes for proteins that produce beta-amyloid, a protein that accumulates in the brains of people with Alzheimer's disease and is believed to contribute to .

Children with Down syndrome have increased normal levels of beta-amyloid in their brains, but it is unknown whether the increased levels affect intellectual abilities, Dr. Powell said. By age 40, nearly all adults with Down syndrome develop signs of Alzheimer's, with dementia developing in their 50s and 60s.

For the study, the researchers used mice with a genetic anomaly that closely mimics human . This type of mice have three copies of a stretch of genes, including those related to beta-amyloid production, and also display learning disabilities, including difficulties learning a standard water maze.

The scientists treated four-month-old genetically altered mice with DAPT, an that blocks gamma-secretase, an enzyme essential for beta-amyloid production. A four-day treatment lowered beta-amyloid levels by 40 percent and significantly improved the rodents' performance to the point that they learned the maze as quickly as normal mice.

Dr. Powell, however, cautioned that the blocked enzyme is involved in many brain functions besides creating beta-amyloid.

"Current gamma-secretase inhibitors may have untoward side effects," he said. "The goal now is to identify drugs that block the ability of gamma-secretase to create amyloid without blocking its ability to perform its other tasks."

Explore further: Study outlines how stroke, head injury can increase risk of Alzheimer's disease

Related Stories

Alzheimer's prevention role discovered for prions

July 3, 2007

A role for prion proteins, the much debated agents of mad cow disease and vCJD, has been identified. It appears that the normal prions produced by the body help to prevent the plaques that build up in the brain to cause Alzheimer’s ...

Anti-inflammatory drug blocks brain plaques

June 24, 2008

Brain destruction in Alzheimer's disease is caused by the build-up of a protein called amyloid beta in the brain, which triggers damaging inflammation and the destruction of nerve cells. Scientists had previously shown that ...

Alzheimer's disease drug treats traumatic brain injury

July 12, 2009

The destructive cellular pathways activated in Alzheimer's disease are also triggered following traumatic brain injury, say researchers from Georgetown University Medical Center (GUMC). They say this finding suggests that ...

Amyloid beta protein gets bum rap

November 9, 2009

While too much amyloid beta protein in the brain is linked to the development of Alzheimer's disease, not enough of the protein in healthy brains can cause learning problems and forgetfulness, Saint Louis University scientists ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.