Researchers identify the source of 'noise' in HIV

April 20, 2010

New research identifies a molecular mechanism that the human immunodeficiency virus (HIV) appears to utilize for generating random fluctuations called "noise" in its gene expression. The study, published by Cell Press in the April 20th issue of the Biophysical Journal, pinpoints the likely source of HIV gene-expression noise and provides intriguing insight into the role of this noise in driving HIV's fate decision between active replication and latency.

After infecting a human cell, HIV integrates into the genome and typically begins to actively replicate. However, the virus can also enter a long-lived latent state, which remains the greatest barrier to eradicating virus from the patient. Senior study author, Dr. Leor S. Weinberger, a molecular virologist and systems biologist from the Department of Chemistry and Biochemistry at the University of California, San Diego, recently showed that noise in HIV gene-expression critically influences the viral decision to enter either active replication or latency. However, the source of the noise was not clear.

To probe the source of this inherent noise in HIV gene expression, Dr. Abhyudai Singh working in Dr. Weinberger's laboratory exploited a technique from electrical engineering that analyzes how noise changes across different levels of expression. The researchers examined cells carrying a single integrated copy of HIV engineered to produce a quantifiable protein, and measured HIV-1 expression noise at dozens of different viral integration sites which act as distinct genetic environments for viral gene expression.

Surprisingly, the authors find that HIV noise levels are substantially higher than measured in other organisms, and that HIV gene expression occurs in randomly timed bursts. During these expression bursts multiple copies of HIV gene products are produced which leads to the high noise levels in HIV gene expression. The bursting model argues that during active expression HIV cycles between periods of silence and bursting and provides insight into how HIV may be activated by host signaling molecules.

"We know that noise in can critically influence HIV's entry to proviral latency. These new results point to transcriptional bursting as a major source of the noise" says Dr. Weinberger. "This finding that transcriptional bursting generates an exceptionally noisy HIV promoter, noisier than almost all other measured promoters, supports the theory that latency may be fundamental to the HIV life cycle and that evolved for probabilistic entry into latency."

Explore further: UCSF scientists find new facts about HIV

More information: Weinberger et al.: "Transcriptional bursting from the HIV-1 promoter is a significant source of stochastic noise in HIV-1 gene expression." The Biophysical Journal, April, 2010. www.biophysics.org/

Related Stories

UCSF scientists find new facts about HIV

December 7, 2005

University of California-San Francisco scientists have discovered how the human immunodeficiency virus can be kept dormant and hidden in immune cells.

Can the tonsils influence oral HIV transmission?

July 26, 2007

Current research demonstrates that the tonsils may possess the necessary factors to act as a transmission site for the spread of HIV. The related report by Moutsopoulos et al, “Tonsil Epithelial Factors May Influence Oropharyngeal ...

Mutant host cell protein sequesters critical HIV-1 element

January 15, 2009

Scientists have identified a new way to inhibit a molecule that is critical for HIV pathogenesis. The research, published by Cell Press in the January 16th issue of the journal Molecular Cell, presents a target for development ...

MicroRNAs help control HIV life cycle

June 25, 2009

Scientists at Burnham Institute for Medical Research (Burnham) have discovered that specific microRNAs (non-coding RNAs that interfere with gene expression) reduce HIV replication and infectivity in human T-cells. In particular, ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.