Disruption of immune-system pathway key step in cancer progression

May 18, 2009

Human immune cells communicate constantly with one another as they coordinate to fight off infection and other threats. Now researchers at Stanford University's School of Medicine have shown that muffling a key voice in this conversational patter is an early step in the progression of human cancers. Silencing an inter-cell signaling mechanism called the interferon pathway may be one way newly developing cancers gain the upper hand. It may also explain the immune dysfunctions seen in many cancer patients and why cancer immunotherapies are often ineffective.

"Over half of cancer patients mount an immune response against their own cancer," said hematologist Peter P. Lee, MD, associate professor of hematology. "So, why does it so often fail? Our research indicates that cancers interfere with a critically important immune signaling pathway. There's a possibility that correcting this defect may one day become part of a useful treatment for many types of cancer." Lee is the senior author of the research, which will be published in the advance online version of on May 18.

Clues that the interferon pathway is important in fighting off cancers come from mouse models in which the pathway has been artificially disrupted. These animals develop spontaneous tumors at higher rates than normal animals with functional interferon signaling — showing that the immune system quashes many cancers in their infancy. Some viruses are also known to inhibit the interferon pathway.

"It's a very dynamic interaction," said Lee. "If the immune system is successful in stopping a developing cancer, we never know about it because no disease develops. If the cancer cell population overcomes the immune system, you get cancer." In other words, physicians and patients see only the immune system's defeats. This adds an additional hurdle to overcome for new cancer treatments called immunotherapies that are meant to work by stimulating the patient's immune system to attack tumor cells.

Lee and his colleagues had previously shown that the interferon signaling pathway was compromised in melanoma patients. In the current study, the researchers investigated whether patients with two other types of cancer — breast and gastrointestinal — also showed the same defect. They isolated called lymphocytes in blood samples from patients with three types of cancers (32 patients, 12 melanoma patients and 11 gastrointestinal cancer patients) as well as from 28 age-matched healthy patients.

They then compared the response of three classes of lymphocytes — B cells, T cells and NK cells — to exposure to interferons. They found that lymphocytes from breast cancer patients, as well as melanoma and gastrointestinal cancer patients, expressed significantly lower levels of interferon-responsive signaling molecules than did lymphocytes from healthy patients.

"They have a clear defect in the interferon signaling pathway," said Lee. When the researchers looked more closely at the lymphocytes from breast cancer patients, they found that the defect was equally severe in samples from people with early- and late-stage cancers — indicating that the problem must arise soon after the cancer begins to develop — and that it was present regardless of whether the patient had ever been treated with chemotherapy. Finally, the researchers showed that the immune cells from the breast cancer patients responded less efficiently to external activation signals.

"It's now looking like the interferon pathway may harbor a general immune defect in many types of cancers," said Lee. He and his colleagues are working to pinpoint what exactly is going haywire in the pathway and why. They are also investigating whether the problems are likely to block the effectiveness of some of the newer immunotherapies that rely on the presence of a functional .

"Whatever functional defect these immune cells have likely impacts the effectiveness of both active immunotherapy, like cancer vaccines, and passive immunotherapy, like cellular therapies," said Lee. "If these forces are still at play in vivo, the patient's immune response to these types of treatments will be blunted."

Source: Stanford University Medical Center (news : web)

Explore further: Cancer vaccine may be possibility

Related Stories

Cancer vaccine may be possibility

February 24, 2006

Researchers at the University of Washington and the Fred Hutchinson Cancer Center are working on a vaccine to prevent cancer.

Tumor wizardry wards off attacks from the immune system

July 14, 2006

Like the fictional wizard Harry Potter, some cancerous tumors seem capable of wrapping themselves in an invisibility cloak. Researchers at Washington University School of Medicine in St. Louis have found that pancreatic tumors ...

Mechanisms involved with tumor relapse identified

March 13, 2007

Researchers at Virginia Commonwealth University’s Massey Cancer Center studying the interaction between the immune system and cancer cells have identified interferon gamma as one of the signaling proteins involved with ...

Chemotherapy might help cancer vaccines work

May 16, 2008

Chemotherapy given in conjunction with cancer vaccines may boost the immune system’s response, potentially improving the effectiveness of this promising type of cancer therapy, according to a study by researchers in the ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.