New strategy to combat cancer: Streamlining blood vessel walls

February 12, 2009

Our blood vessels provide all growing tissues with oxygen and nutrients. The growth of blood vessels (a process termed angiogenesis) is indispensable for the proper functioning of organs and the repair of tissues when they have become damaged.

"Phalanx" cell

The researchers have been able to show that a reduced activity of the oxygen sensor PHD2 in case of oxygen shortage leads to the formation of a close-fitting, smooth, cobblestone-shaped lining of endothelial cells. This contiguous row of cells resembles a phalanx, the tightly-knit formation of soldiers with shields touching each other that the Greeks in classical antiquity used to win historical victories. This phalanx streamlines blood vessels, which improves the supply of oxygen - and medicines - to the surrounding tissue.

New treatments?

This discovery is an important breakthrough for the treatment of cancer. The larger a tumor grows, the more oxygen it requires. The tumor tries to remedy this situation by producing growth factors that stimulate the growth of new blood vessels. However, these new blood vessels have an abnormal shape, which impairs blood flow so that the cancer cells receive little oxygen. This shortage of oxygen forces cancer cells to escape the tumor and to metastasize to distant organs, which ultimately results in a malignant cancer. In addition, the abnormal shape of the blood vessels restricts the delivery and effectiveness of anti-cancer medicines.

PHD2-blockers can offer new possibilities to combat cancer. By converting the abnormal endothelial layer into a phalanx of tightly aligned and impermeable cells, anti-cancer medicines can reach their destination more easily, and chemotherapy is improved. Furthermore, through the improved oxygen supply, the cancer cells are much less inclined to travel elsewhere. In addition, such a phalanx barrier of endothelial cells physically prevents cancer cells from worming their way to the blood inside the vessel and, thus, these cancer cells no longer have a chance to travel to other parts of the body and to start the growth of a new tumor there.

This research might also open new methods of treatment for disorders that are accompanied by a shortage of oxygen, such as myocardial infarction or stroke. The researchers also hope to be able to use this discovery to tackle the morbid growth of blood vessels in the retina.

Source: VIB (the Flanders Institute for Biotechnology)

Explore further: Targeted drug delivery with these nanoparticles can make medicines more effective

Related Stories

Capturing cell growth in 3-D

August 14, 2015

Replicating how cancer and other cells interact in the body is somewhat difficult in the lab. Biologists generally culture one cell type in plastic plates, which doesn't represent the dynamic cell interactions within living ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Feb 13, 2009
(1)Cells don't "eat" they have no digestive tract.
(2)The cell's malfunction is electronic-hyperthermal.
(3)Whole cells do not travel inside capillaries!
(4)Angiogenesis may be an attempt to COOL the cell!
(5)O3 overheats. SWD cools, slows mitosis! Try it!
not rated yet Feb 18, 2009
what do you think by SWD

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.