Study in mice shows mechanisms behind immune responses to brain tumors

January 13, 2009

Findings from a study conducted in mice, published in the open access journal PLoS Medicine next week, provide new insights into how an effective immune response to brain tumors could potentially be brought about in humans.

Maria Castro, of the Cedars Sinai Medical Center in Los Angeles, and colleagues tested a new combined treatment strategy designed to encourage the immune system to respond and kill tumor cells from a particularly aggressive cancer called glioblastoma multiforme (GBM). GBM accounts for a fifth of all primary brain tumors and only one in twenty people survives for more than five years after being diagnosed with it. Therapies that have been tried with the goal of inducing an immune response against GBM have been unsuccessful in the past, partly because the brain contains few dendritic cells - immune cells which recognise tumor antigens and present them to other cells in the immune system.

In this study, after establishing brain tumors in mice, the researchers injected two harmless viruses into the tumors. One of these viruses successfully attracted dendritic cells into the brain; the other, in combination with a drug which was delivered systemically, killed tumor cells, causing the release of a protein, high-mobility-group box 1, from dying tumor cells. This ultimately allowed the immune system to identify and eliminate the tumor.

It should be stressed that results from mice studies do not always lead to effective treatments for human patients. However, the results from this study do provide compelling evidence to support the view that the combination of immunotherapy and strategies to kill tumor cells may eventually provide effective treatment for GBM and other brain tumors in humans. The combination therapy used in this study will be tested in clinical trials for the treatment of GBM in the near future.

Citation: Curtin JF, Liu N, Candolfi M, Xiong W, Assi H, et al. (2009) HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med 6(1): e1000010. doi:10.1371/journal.pmed.1000010
medicine.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pmed.1000010

Source: Public Library of Science

Explore further: Imaging glucose uptake activity inside single cells

Related Stories

Imaging glucose uptake activity inside single cells

July 17, 2015

Researchers at Columbia University have reported a new approach to visualize glucose uptake activity in single living cells by light microscopy with minimum disturbance. In a recent study published in Angewandte Chemie International ...

Exposing breast cancer using nanoscale polymers

May 13, 2015

Photoacoustic imaging is a ground-breaking technique for spotting tumors inside living cells with the help of light-absorbing compounds known as contrast agents. A*STAR researchers have now discovered a way to improve the ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.