Hoarding rainwater could 'dramatically' expand range of dengue-fever mosquito

January 27, 2009

Ecologists have developed a new model to predict the impact of climate change on the dengue fever-carrying mosquito Aedes aegypti in Australia - information that could help limit its spread.

According to the study, published in the new issue of the British Ecological Society's journal Functional Ecology, climate change and evolutionary change could act together to accelerate and expand the mosquito's range. But human behaviour - in the form of storing water to cope with climate change - is likely to have an even greater impact.

Lead author, Dr Michael Kearney of the University of Melbourne says: "The potential direct impact of climate on the distribution and abundance of Ae. aegypti is minor when compared to the potential effect of changed water-storage behaviour. In many Australian cities and towns, a major impact of climate change is reduced rainfall, resulting in a dramatic increase in domestic rainwater storage and other forms of water hoarding."

"Water tanks and other water storage vessels such as modified wheelie bins are potential breeding sites for this disease-bearing mosquito. Without due caution with water storage hygiene, this indirect effect of climate change via human adaptation could dramatically re-expand the mosquito's current range," he says.

Ae. aegypti probably arrived in Australia in the 19th century on ships carrying mosquito larvae-infested water barrels. During the late 19th century, Ae. aegypti was widespread in urban Australia, stretching as far south as Sydney and Perth. By the late 1960s, Ae. aegypti was restricted to the northern half of Queensland (where it currently resides) thanks in part to removal of old galvanised tin rainwater tanks, installation of piped water, insecticides and new power lawnmowers that helped people keep their back yards tidy.

The study has major implications for public health interventions in Australia and other areas of the world affected by dengue and other mosquito-spread diseases. According to Dr Scott Ritchie, a mosquito control expert and contributing author: "The better we understand the underlying processes, the better we will be able to manage disease risk into the future. Our results highlight that dengue-vectoring mosquitoes can spread to areas where they are currently not found once suitable breeding sites, such as containers, become available. Our research can help target water hygiene education campaigns to areas most at risk of dengue mosquito establishment."

The predictions come from a new "bottom-up" model that takes into account the mosquito's biology and its physiological limitations, such as the ability of its eggs to tolerate drying out.

To construct the model, Kearney and his colleagues needed to predict the microclimates mosquitoes experience. "Like all mosquitoes, the dengue mosquito has an aquatic larval phase and it is very particular about breeding in artificial containers like water tanks, buckets and old tyres. So we developed a model of the temperature and depth of water in different containers as a function of climate. We modelled two extreme types of container - a large (3600 litre) water tank receiving rainwater from a roof catchment, and a small (20 litre) bucket only receiving rainwater from directly above. We considered each container type in high and low shade," Kearney says.

The authors also took evolution into account - the first time this has been done in such models. According to Professor Ary Hoffmann, a coauthor of the study: "Evolution happens all the time in nature and can be very rapid, taking only a few generations to influence the fitness of populations. Our results show that evolution can make a very large difference when predicting changes in species ranges under climate change."

Reference: Michael Kearney et al (2009). Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito Aedes aegypti in Australia, Functional Ecology, doi: 10.1111/j.1365-2435.2008.01538.x, is published online on 28 January 2009.

Source: Wiley

Explore further: Don't forget plankton in climate change models, says study

Related Stories

Don't forget plankton in climate change models, says study

November 26, 2015

A new study from the University of Exeter, published in the journal Ecology Letters, found that phytoplankton - microscopic water-borne plants - can rapidly evolve tolerance to elevated water temperatures. Globally, phytoplankton ...

Parched, famished Niger hard hit by climate change

November 27, 2015

When yet another drought wiped out his flock five years ago, Toro, a Fulani shepherd in Niger, decided to migrate to the capital Niamey, where he found work selling cell phones instead.

Extreme heatwaves may hit Europe in the short term

November 27, 2015

Regional climate projections for the two coming decades (2021-2040) suggest enhanced probability of heatwaves anywhere in Europe, which would be comparable or greater than the Russian heatwave in 2010 - the worst since 1950 ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jan 27, 2009
I'm sure the Australians are aware of the amazing technological advances such as chloramine which render water uninhabitable for mosquitos.
not rated yet Jan 27, 2009
Or how about a solar powered UV light source in the barrel - would that be effective?
not rated yet Jan 28, 2009
Or how about a solar powered UV light source in the barrel - would that be effective?

Chloramine $1 per gallon. 5 ml to treat 50 gallons.

Solar powered UV light device probably a few hundred, unproven, only works when the sun is up.

I'll go with chloramine. Sometimes the simplest solution is the best one.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.